Tag Archives: machine injection

China factory Machine Nylon Drive Transmission Injection Plastic Toothed Cylindrical Straight Spur Gear Cog-Wheel

Product Description

Product Description

Machine Nylon Drive Transmission Injection Plastic Toothed Cylindrical Straight Spur Gear Cog-Wheel

Item Customized Injection and machining gears
Process Injection molding,CNC machining,
material Nylon, PA66, NYLON , ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc
Quality Control ISO9001 and ISO14001
Dimension bore tolerances -/+0.01mm
Quality standard AGMA, JIS, DIN 
Surface treatment Blackening, plated, anodizing, hard anodizing etc
Gear hardness 30 to 60 H.R.C
Size/Color Gears and parts dimensions are according to drawings from customer, and colors are customized
Surface treatment Polished or matte surface, painting, texture, vacuum aluminizing and can be stamped with logo etc.
Dimensions Tolerance ±0.01mm or more precise
Samples confirmation and approval samples shipped for confirmation and shipping cost paid by customers
Package Inner clear plastic bag/outside carton/wooden pallets/ or any other special package as per customer’s requirements.
Delivery Time Total takes 2~~8weeks usually
Shipping
 

 Usual FEDEX, UPS, DHL, TNT, EMS or base on customer’s requirement.

                       

 

Production management:

1. The workers are trained to inspect the gears and notice any defect in production in time.
2. QC will check 1pcs every 100pcs in CNC machining, and gears will meet all dimension tolerances.
3. Gears will be inspected at every step, and gears will be inspected before shipment, and all inspection records will be kept in our factory for 3 years.
4. Our sales will send you pictures at every gears production steps, and you will know the detailed production status, and you can notice any possibility of mistake, for our sales, QC and workers are keeping close watch on all production.
5. You will feel us working very carefully to assure the quality and easy to work with, 
6. we cherish every inquiry, every opportunity to make gears and parts and cherish every customer.

 QUALITY CONTROL PROCESS:
 
1)       Inspecting the raw material –IQC)
2)       Checking the details before the production line operated
3)       Have full inspection and routing inspection during mass production—In process quality control (IPQC)
4)       Checking the gears after production finished—- (FQC)
5)       Checking the gears after they are finished—–Outgoing quality control (OQC)

Service:

1. Molds designs as per customers’ gears drawing;
2. Submitting molds drawings to customers to review and confirm before mols production.
3. Providing samples with whole dimensions and cosmetic inspection report, material certification to customers.
4. Providing inspection report of important dimensions and cosmetic in batches parts.

Packing and shipment:

1. Gears are well and carefully packed in PP bags in CTNS, strong enough for express shipping, air shipment or sea shipment.
2. Air shipment, sea shipment or shipment by DHL, UPS, FedEx or TNT are availabe.
3. Trade terms: EXW, FOB HangZhou, or CIF
4. All shippings will be carefully arranged and will reach your places fast and safely.

FAQ

Q1: How to guarantee the Quality of gears and parts?
We are ISO 9001:2008 certified factory and we have the integrated system for industrial parts quality control. We have IQC (incoming quality control), 
IPQCS (in process quality control section), FQC (final quality control) and OQC (out-going quality control) to control each process of industrial parts prodution.

 Q2: What are the Advantage of your gears and parts?
Our advantage is the competitive and reasonable prices, fast delivery and high quality. Our eployees are responsible-oriented, friendly-oriented,and dilient-oriented. 
Our industrial parts products are featured by strict tolerance, smooth finish and long-life performance. 

Q3: what are our machining equipments?
Our machining equipments include plasticn injection machinies, CNC milling machines, CNC turning machines, stamping machines, hobbing machines, automatic lathe machines, tapping machines, grinding machines, cutting machines and so on. 

Q4: What shipping ways do you use?
Generally, we will use UPS DHL or FEDEX and sea shipping 

5: What materials can you process?
For plastic injection gears and parts, the materials are Nylon, PA66, NYLON with 30% glass fibre, ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc.
For metal and machining gears and parts, the materials are brass, bronze, copper, stainless steel, steel, aluminum, titanium plastic etc. 

Q6: How long is the Delivery for Your gears and parts? 
Generally , it will take us 15 working days for injection or machining, and we will try to shorten our lead time.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Curved Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

plastic wheel

Can you provide examples of products or machinery that commonly use plastic wheels?

Plastic wheels are used in a wide range of products and machinery across various industries due to their versatility and unique qualities. Here are examples of products and machinery that commonly use plastic wheels:

  • 1. Office Furniture: Office chairs often feature plastic caster wheels for smooth and quiet movement on office floors.
  • 2. Material Handling Equipment: Hand trucks, dollies, and carts used in warehouses and distribution centers frequently use plastic wheels to transport goods efficiently.
  • 3. Lawn and Garden Equipment: Lawnmowers, garden carts, and wheelbarrows are equipped with plastic wheels for easy maneuverability on lawns and uneven terrain.
  • 4. Retail and Shopping Carts: Shopping carts in supermarkets and retail stores typically have plastic wheels for easy navigation through aisles.
  • 5. Medical Equipment: Hospital beds, medical carts, and mobility aids often incorporate plastic wheels, as they are easy to clean and resist corrosion.
  • 6. Aerospace Ground Support: Ground support equipment at airports, including baggage carts and maintenance vehicles, may use plastic wheels for their lightweight properties.
  • 7. Food and Beverage Handling: Food service equipment, such as serving trolleys and food processing machinery, often feature plastic wheels due to their resistance to moisture and corrosion.
  • 8. Recreational Vehicles (RVs): RV leveling jacks and stabilizers utilize plastic wheels to provide stability and ease of adjustment when parked.
  • 9. DIY and Home Improvement Tools: Hand trucks, utility carts, and toolboxes used for DIY and home improvement projects may have plastic wheels for ease of movement.
  • 10. Industrial Machinery: Some industrial machines and equipment incorporate plastic wheels to facilitate movement and protect factory floors.
  • 11. Conveyor Systems: Conveyor systems in manufacturing and logistics often use plastic wheels to support the movement of goods along production lines.
  • 12. Skateboards and Skateboarding Equipment: Skateboard wheels are typically made of plastic, offering various sizes and hardness levels to suit different riding styles.
  • 13. Boat Trailer Rollers: Rollers on boat trailers are commonly made of plastic, as they resist corrosion when exposed to water and provide smooth boat launching and retrieval.
  • 14. Gate Hardware: Some gate wheels and sliding door systems feature plastic wheels for smooth operation and reduced noise.

These examples demonstrate the widespread use of plastic wheels in diverse applications, emphasizing their adaptability and suitability for various industries and products.

plastic wheel

What considerations should be taken into account when using plastic wheels in different environments?

Using plastic wheels in various environments requires careful consideration of factors to ensure optimal performance and longevity. Here are key considerations when using plastic wheels in different settings:

  • 1. Load Capacity: Determine the weight-bearing capacity required for your specific application. Ensure that the plastic wheels you choose can handle the anticipated loads without deformation or failure.
  • 2. Material Selection: Select the appropriate plastic material for the environment. Different plastics offer varying levels of resistance to chemicals, moisture, temperature extremes, and UV exposure. Choose a material that aligns with the conditions in which the wheels will operate.
  • 3. Temperature Range: Consider the temperature range of the environment. Some plastic materials may become brittle in cold conditions or soften in high heat. Ensure that the selected plastic wheels are suitable for the expected temperature extremes.
  • 4. Chemical Exposure: Evaluate whether the wheels will come into contact with chemicals, solvents, or corrosive substances. Choose plastic materials with high chemical resistance to prevent degradation or weakening of the wheels.
  • 5. Moisture and Humidity: If the environment is humid or wet, opt for plastic wheels that are moisture-resistant and do not absorb water. This prevents swelling or degradation of the wheels in damp conditions.
  • 6. Surface Conditions: Consider the condition of the surfaces the wheels will roll on. Ensure that the flooring or terrain is free from sharp objects, debris, or obstacles that could cause premature wear or damage to the wheels.
  • 7. Floor Protection: In indoor environments, choose plastic wheels that do not mark or damage flooring surfaces. Non-marking wheels are essential for preserving the appearance of floors.
  • 8. Noise Levels: Assess the noise requirements of the environment. If noise reduction is a priority, select plastic wheels known for their quiet operation, and consider noise-dampening design features.
  • 9. Customization: Determine if customization is necessary. Some applications may benefit from wheels with specific tread patterns, sizes, or load ratings. Customization allows you to tailor the wheels to your exact requirements.
  • 10. Safety: Prioritize safety considerations, especially in industrial or automotive settings. Ensure that the chosen plastic wheels provide stability and do not compromise safety when handling heavy loads or operating in challenging conditions.
  • 11. Maintenance: Plan for regular maintenance and inspections of the wheels based on the environment’s demands. Follow manufacturer guidelines for maintenance practices to extend wheel life and ensure continued functionality.
  • 12. Compatibility: Ensure that the plastic wheels are compatible with the equipment or vehicles they will be installed on. Consider factors like wheel size, attachment mechanisms, and load distribution to avoid compatibility issues.
  • 13. Regulatory Compliance: In some industries, compliance with specific regulations or standards may be necessary. Ensure that the plastic wheels meet any relevant industry standards or certifications.

By carefully assessing and addressing these considerations, you can make informed decisions when using plastic wheels in diverse environments, optimizing their performance, and ensuring their suitability for the specific conditions they will encounter.

plastic wheel

What are the different types and sizes of plastic wheels available in the market?

The market offers a variety of plastic wheels, each designed for specific applications and available in various sizes. Here are different types and sizes of plastic wheels commonly available:

  • 1. Caster Wheels: Caster wheels are used for mobility and swiveling in a wide range of applications. They come in sizes ranging from small, furniture casters to large, heavy-duty industrial casters.
  • 2. Hand Truck Wheels: These wheels are commonly used on hand trucks and dollies for moving heavy loads. They are available in sizes such as 8-inch, 10-inch, and 12-inch diameters.
  • 3. Trolley Wheels: Trolley wheels are used on material handling carts and trolleys. They come in various sizes, including 4-inch, 5-inch, and 6-inch diameters.
  • 4. Lawnmower Wheels: These wheels are designed for lawnmowers and other outdoor equipment. They are available in sizes like 8-inch, 10-inch, and 12-inch diameters.
  • 5. Office Chair Casters: Office chair casters come in different sizes to fit various chair bases. Common sizes include 2-inch, 2.5-inch, and 3-inch diameters.
  • 6. Heavy-Duty Industrial Wheels: These wheels are used in industrial and manufacturing settings. They are available in larger sizes, such as 6 inches, 8 inches, and even up to 12 inches or more in diameter.
  • 7. Skateboard Wheels: Plastic skateboard wheels come in various sizes, typically ranging from 50mm to 60mm in diameter, with different hardness levels for different riding styles.
  • 8. Conveyor Wheels: Conveyor wheels are used in material handling and conveyor systems. They come in sizes suitable for specific conveyor designs and loads.
  • 9. V-Groove Wheels: V-groove wheels are designed for use on tracks or grooves. They come in sizes suitable for different track profiles and load capacities.
  • 10. Trailer Jack Wheels: Trailer jack wheels are used for trailer jacks and stabilizers. They come in sizes such as 6-inch, 8-inch, and 10-inch diameters.
  • 11. Light-Duty Wheels: These wheels are used in various light-duty applications, such as small carts and furniture. They are available in sizes ranging from 1 inch to 6 inches in diameter.
  • 12. Specialized Wheels: Some plastic wheels are designed for specific applications, such as luggage wheels, boat trailer rollers, and gate wheels. Their sizes vary depending on the intended use.

The availability of plastic wheels in different types and sizes allows them to cater to a wide range of industries and applications. When selecting a plastic wheel, it’s essential to consider factors like load capacity, wheel diameter, tread design, and material to ensure it meets the requirements of the specific use case.

China factory Machine Nylon Drive Transmission Injection Plastic Toothed Cylindrical Straight Spur Gear Cog-Wheel  China factory Machine Nylon Drive Transmission Injection Plastic Toothed Cylindrical Straight Spur Gear Cog-Wheel
editor by Dream 2024-05-17

China wholesaler Starter Machine Transmission Precision Custom Duplicate Injection Plastic Toothed Spur CHINAMFG

Product Description

Product Description

Starter Machine Transmission Precision Custom duplicate Injection Plastic Toothed Spur Gear Wheel

Item Customized Injection and machining gears
Process Injection molding,CNC machining,
material Nylon, PA66, NYLON , ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc
Quality Control ISO9001 and ISO14001
Dimension bore tolerances -/+0.01mm
Quality standard AGMA, JIS, DIN 
Surface treatment Blackening, plated, anodizing, hard anodizing etc
Gear hardness 30 to 60 H.R.C
Size/Color Gears and parts dimensions are according to drawings from customer, and colors are customized
Surface treatment Polished or matte surface, painting, texture, vacuum aluminizing and can be stamped with logo etc.
Dimensions Tolerance ±0.01mm or more precise
Samples confirmation and approval samples shipped for confirmation and shipping cost paid by customers
Package Inner clear plastic bag/outside carton/wooden pallets/ or any other special package as per customer’s requirements.
Delivery Time Total takes 2~~8weeks usually
Shipping
 

 Usual FEDEX, UPS, DHL, TNT, EMS or base on customer’s requirement.

                       

 

Production management:

1. The workers are trained to inspect the gears and notice any defect in production in time.
2. QC will check 1pcs every 100pcs in CNC machining, and gears will meet all dimension tolerances.
3. Gears will be inspected at every step, and gears will be inspected before shipment, and all inspection records will be kept in our factory for 3 years.
4. Our sales will send you pictures at every gears production steps, and you will know the detailed production status, and you can notice any possibility of mistake, for our sales, QC and workers are keeping close watch on all production.
5. You will feel us working very carefully to assure the quality and easy to work with, 
6. we cherish every inquiry, every opportunity to make gears and parts and cherish every customer.

 QUALITY CONTROL PROCESS:
 
1)       Inspecting the raw material –IQC)
2)       Checking the details before the production line operated
3)       Have full inspection and routing inspection during mass production—In process quality control (IPQC)
4)       Checking the gears after production finished—- (FQC)
5)       Checking the gears after they are finished—–Outgoing quality control (OQC)

Service:

1. Molds designs as per customers’ gears drawing;
2. Submitting molds drawings to customers to review and confirm before mols production.
3. Providing samples with whole dimensions and cosmetic inspection report, material certification to customers.
4. Providing inspection report of important dimensions and cosmetic in batches parts.

Packing and shipment:

1. Gears are well and carefully packed in PP bags in CTNS, strong enough for express shipping, air shipment or sea shipment.
2. Air shipment, sea shipment or shipment by DHL, UPS, FedEx or TNT are availabe.
3. Trade terms: EXW, FOB HangZhou, or CIF
4. All shippings will be carefully arranged and will reach your places fast and safely.

FAQ

Q1: How to guarantee the Quality of gears and parts?
We are ISO 9001:2008 certified factory and we have the integrated system for industrial parts quality control. We have IQC (incoming quality control), 
IPQCS (in process quality control section), FQC (final quality control) and OQC (out-going quality control) to control each process of industrial parts prodution.

 Q2: What are the Advantage of your gears and parts?
Our advantage is the competitive and reasonable prices, fast delivery and high quality. Our eployees are responsible-oriented, friendly-oriented,and dilient-oriented. 
Our industrial parts products are featured by strict tolerance, smooth finish and long-life performance. 

Q3: what are our machining equipments?
Our machining equipments include plasticn injection machinies, CNC milling machines, CNC turning machines, stamping machines, hobbing machines, automatic lathe machines, tapping machines, grinding machines, cutting machines and so on. 

Q4: What shipping ways do you use?
Generally, we will use UPS DHL or FEDEX and sea shipping 

5: What materials can you process?
For plastic injection gears and parts, the materials are Nylon, PA66, NYLON with 30% glass fibre, ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc.
For metal and machining gears and parts, the materials are brass, bronze, copper, stainless steel, steel, aluminum, titanium plastic etc. 

Q6: How long is the Delivery for Your gears and parts? 
Generally , it will take us 15 working days for injection or machining, and we will try to shorten our lead time.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Curved Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

plastic wheel

What maintenance practices are recommended for plastic wheels to ensure optimal functionality?

Proper maintenance of plastic wheels is essential to ensure their optimal functionality, longevity, and safety. Here are recommended maintenance practices for plastic wheels:

  • 1. Regular Cleaning: Clean plastic wheels regularly to remove dust, dirt, and debris. Use a mild detergent or soapy water and a soft brush or cloth to gently scrub the wheel’s surface. Rinse thoroughly and allow the wheels to dry completely.
  • 2. Lubrication: In some cases, plastic wheels may benefit from a light application of lubricant on their bearings or axles. Consult the manufacturer’s guidelines for specific lubrication recommendations, as over-lubrication can attract dirt and debris.
  • 3. Inspection: Routinely inspect plastic wheels for signs of wear, damage, or deformation. Look for cracks, chips, or irregularities in the wheel’s surface. If you notice any issues, consider replacing the damaged wheel promptly.
  • 4. Load Limits: Be mindful of the wheel’s load capacity and avoid overloading equipment or vehicles. Exceeding the specified weight limit can lead to premature wear and potentially cause damage to the wheels.
  • 5. Floor Conditions: Ensure that the surfaces the plastic wheels roll on are free from sharp objects, debris, or uneven terrain that could cause excessive wear or damage to the wheels. Smooth and clean floors contribute to longer wheel life.
  • 6. Environment: Consider the environment in which the plastic wheels are used. Some chemicals or abrasive substances may accelerate wear. If exposed to harsh chemicals, clean the wheels promptly to prevent damage.
  • 7. Temperature: Be aware of temperature extremes. Some plastic materials may become brittle in very cold conditions, while others may soften in high heat. Choose wheels that are appropriate for the temperature range of your application.
  • 8. Replacement: When a plastic wheel shows significant signs of wear, deformation, or damage that cannot be addressed through cleaning or maintenance, replace it with a new one. Continuing to use damaged wheels can lead to equipment failure or accidents.
  • 9. Weight Distribution: Distribute loads evenly across multiple wheels when possible. Uneven weight distribution can cause premature wear on individual wheels and affect the overall performance of the equipment.
  • 10. Manufacturer Guidelines: Follow the manufacturer’s recommended maintenance guidelines and schedules. Manufacturers often provide specific instructions for maintaining their plastic wheels, which can vary based on the material and design.

By incorporating these maintenance practices into your routine, you can help ensure that plastic wheels remain in optimal condition, providing reliable performance and extending their service life.

plastic wheel

Can you share tips for selecting the right plastic wheels based on specific industry requirements?

Selecting the right plastic wheels based on specific industry requirements is essential for optimal performance and reliability. Here are tips to guide your selection process:

  • 1. Identify Load Requirements: Determine the maximum load capacity your plastic wheels need to support. Consider potential variations in load and choose wheels with a suitable load rating to ensure safe operation.
  • 2. Evaluate Material Compatibility: Assess the environmental conditions your plastic wheels will encounter. Choose materials that are compatible with the industry’s specific environment, such as chemical resistance for manufacturing or moisture resistance for healthcare settings.
  • 3. Consider Temperature Range: If your industry operates in extreme temperatures, select plastic wheels that can withstand the temperature range without deformation or loss of performance.
  • 4. Prioritize Floor Protection: In indoor or commercial settings, prioritize wheels that won’t mark or damage flooring surfaces. Non-marking and floor-protective wheels are crucial in environments like hospitality and retail.
  • 5. Noise Sensitivity: If noise reduction is a concern, opt for plastic wheels known for their quiet operation. Quiet wheels are ideal for office equipment, libraries, and healthcare environments where noise levels are critical.
  • 6. Durability and Longevity: Consider the expected service life of the wheels. High-quality plastic wheels with durable materials and construction will reduce maintenance and replacement costs over time.
  • 7. Assess Chemical Resistance: In industries where exposure to chemicals is common, select plastic wheels with excellent chemical resistance. This ensures that the wheels won’t degrade or weaken when exposed to corrosive substances.
  • 8. Evaluate Impact Resistance: Industries involving heavy equipment or potential impacts should prioritize plastic wheels that can withstand shock and impact without cracking or breaking.
  • 9. Customization: Determine if your industry requires customized wheel specifications, such as specific sizes, load capacities, or tread patterns. Customization ensures that the wheels meet precise industry needs.
  • 10. Regulatory Compliance: Some industries have specific regulations or standards for wheel materials and performance. Ensure that your selected plastic wheels comply with these requirements to maintain industry standards.
  • 11. Test Performance: Whenever possible, conduct performance tests to evaluate how the plastic wheels perform under actual industry-specific conditions. This real-world testing helps ensure that the chosen wheels meet your requirements.
  • 12. Prioritize Safety: In industries where safety is paramount, select wheels that provide stability and reliability. Safety-critical applications should never compromise on wheel quality.
  • 13. Consider Weight Reduction: In industries where weight reduction is desirable, opt for lightweight plastic wheels. Reduced weight can improve energy efficiency, especially in applications like aerospace or automotive.

By considering these industry-specific factors and tips, you can make informed decisions when selecting plastic wheels that best meet the requirements of your particular industry. This ensures that your equipment and systems operate efficiently and reliably in their respective environments.

plastic wheel

In what scenarios are plastic wheels commonly used, and how do they compare to metal wheels?

Plastic wheels find common usage in various scenarios due to their unique characteristics. Here are scenarios where plastic wheels are commonly used, along with a comparison to metal wheels:

  • 1. Indoor Material Handling: Plastic wheels are often preferred for indoor material handling equipment, such as carts and dollies. They offer quiet and smooth operation, making them suitable for use in warehouses and factories. Compared to metal wheels, plastic wheels are quieter and less likely to damage indoor flooring.
  • 2. Office Furniture: Plastic wheels are commonly used on office chairs and furniture. They provide ease of movement, floor protection, and a quiet glide. In contrast, metal wheels can be noisy and may damage flooring surfaces.
  • 3. Light-Duty Automotive Applications: In automotive applications, plastic wheels are used for lightweight components like automotive jacks and tool carts. They offer a balance of durability, weight savings, and cost-effectiveness. Metal wheels, on the other hand, are used for heavy-duty automotive applications.
  • 4. Retail and Shopping Carts: Plastic wheels are standard in retail and shopping cart applications. They provide a smooth and quiet shopping experience and reduce the effort required to push carts. Metal wheels are less common in this scenario due to their noise and potential to damage store floors.
  • 5. Medical Equipment: Plastic wheels are used in medical equipment, where cleanliness, non-corrosiveness, and ease of cleaning are essential. Metal wheels may not be suitable due to corrosion concerns and potential difficulty in sterilization.
  • 6. Aerospace Ground Support: In the aerospace industry, plastic wheels are used in ground support equipment, maintenance carts, and aircraft cabin service carts. Their lightweight construction is advantageous for handling equipment around aircraft. Metal wheels are used in some heavy-duty ground support applications.
  • 7. Food and Beverage Handling: Plastic wheels are used in food service equipment, as they resist moisture and corrosion. They are ideal for food carts, serving trolleys, and food processing machinery. Metal wheels may not be suitable in food handling due to corrosion risks.
  • 8. Recreational Vehicles (RVs) and Trailers: Plastic wheels are used in RV leveling jacks and trailer jacks. They provide stability and ease of adjustment for leveling RVs and trailers when parked. Metal wheels are not common in these applications.
  • 9. DIY and Home Improvement: Plastic wheels are used in DIY projects and home improvement applications, such as hand trucks and utility carts. They offer ease of movement and floor protection. Metal wheels are less favored in these scenarios due to potential noise and floor damage.

When comparing plastic wheels to metal wheels, the choice depends on factors like load capacity, durability, noise level, and the specific application’s requirements. Plastic wheels excel in scenarios where lightweight, quiet operation, and floor protection are essential, while metal wheels are preferred for heavy-duty applications with high load requirements.

China wholesaler Starter Machine Transmission Precision Custom Duplicate Injection Plastic Toothed Spur CHINAMFG  China wholesaler Starter Machine Transmission Precision Custom Duplicate Injection Plastic Toothed Spur CHINAMFG
editor by Dream 2024-05-10

China Professional Custom OEM Machine Drive Injection Plastic Toothed Cylindrical Spur Gear Cog Wheel

Product Description

Product Description

Custom OEM Machine Drive Injection Plastic Toothed Cylindrical Spur Gear Cog Wheel

Item Customized Injection and machining gears
Process Injection molding,CNC machining,
material Nylon, PA66, NYLON , ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc
Quality Control ISO9001 and ISO14001
Dimension bore tolerances -/+0.01mm
Quality standard AGMA, JIS, DIN 
Surface treatment Blackening, plated, anodizing, hard anodizing etc
Gear hardness 30 to 60 H.R.C
Size/Color Gears and parts dimensions are according to drawings from customer, and colors are customized
Surface treatment Polished or matte surface, painting, texture, vacuum aluminizing and can be stamped with logo etc.
Dimensions Tolerance ±0.01mm or more precise
Samples confirmation and approval samples shipped for confirmation and shipping cost paid by customers
Package Inner clear plastic bag/outside carton/wooden pallets/ or any other special package as per customer’s requirements.
Delivery Time Total takes 2~~8weeks usually
Shipping
 

 Usual FEDEX, UPS, DHL, TNT, EMS or base on customer’s requirement.

                       

 

Production management:

1. The workers are trained to inspect the gears and notice any defect in production in time.
2. QC will check 1pcs every 100pcs in CNC machining, and gears will meet all dimension tolerances.
3. Gears will be inspected at every step, and gears will be inspected before shipment, and all inspection records will be kept in our factory for 3 years.
4. Our sales will send you pictures at every gears production steps, and you will know the detailed production status, and you can notice any possibility of mistake, for our sales, QC and workers are keeping close watch on all production.
5. You will feel us working very carefully to assure the quality and easy to work with, 
6. we cherish every inquiry, every opportunity to make gears and parts and cherish every customer.

 QUALITY CONTROL PROCESS:
 
1)       Inspecting the raw material –IQC)
2)       Checking the details before the production line operated
3)       Have full inspection and routing inspection during mass production—In process quality control (IPQC)
4)       Checking the gears after production finished—- (FQC)
5)       Checking the gears after they are finished—–Outgoing quality control (OQC)

Service:

1. Molds designs as per customers’ gears drawing;
2. Submitting molds drawings to customers to review and confirm before mols production.
3. Providing samples with whole dimensions and cosmetic inspection report, material certification to customers.
4. Providing inspection report of important dimensions and cosmetic in batches parts.

Packing and shipment:

1. Gears are well and carefully packed in PP bags in CTNS, strong enough for express shipping, air shipment or sea shipment.
2. Air shipment, sea shipment or shipment by DHL, UPS, FedEx or TNT are availabe.
3. Trade terms: EXW, FOB HangZhou, or CIF
4. All shippings will be carefully arranged and will reach your places fast and safely.

FAQ

Q1: How to guarantee the Quality of gears and parts?
We are ISO 9001:2008 certified factory and we have the integrated system for industrial parts quality control. We have IQC (incoming quality control), 
IPQCS (in process quality control section), FQC (final quality control) and OQC (out-going quality control) to control each process of industrial parts prodution.

 Q2: What are the Advantage of your gears and parts?
Our advantage is the competitive and reasonable prices, fast delivery and high quality. Our eployees are responsible-oriented, friendly-oriented,and dilient-oriented. 
Our industrial parts products are featured by strict tolerance, smooth finish and long-life performance. 

Q3: what are our machining equipments?
Our machining equipments include plasticn injection machinies, CNC milling machines, CNC turning machines, stamping machines, hobbing machines, automatic lathe machines, tapping machines, grinding machines, cutting machines and so on. 

Q4: What shipping ways do you use?
Generally, we will use UPS DHL or FEDEX and sea shipping 

5: What materials can you process?
For plastic injection gears and parts, the materials are Nylon, PA66, NYLON with 30% glass fibre, ABS, PP,PC,PE,POM,PVC,PU,TPR,TPE,TPU,PA,PET,HDPE,PMMA etc.
For metal and machining gears and parts, the materials are brass, bronze, copper, stainless steel, steel, aluminum, titanium plastic etc. 

Q6: How long is the Delivery for Your gears and parts? 
Generally , it will take us 15 working days for injection or machining, and we will try to shorten our lead time.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Curved Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

plastic wheel

What maintenance practices are recommended for plastic wheels to ensure optimal functionality?

Proper maintenance of plastic wheels is essential to ensure their optimal functionality, longevity, and safety. Here are recommended maintenance practices for plastic wheels:

  • 1. Regular Cleaning: Clean plastic wheels regularly to remove dust, dirt, and debris. Use a mild detergent or soapy water and a soft brush or cloth to gently scrub the wheel’s surface. Rinse thoroughly and allow the wheels to dry completely.
  • 2. Lubrication: In some cases, plastic wheels may benefit from a light application of lubricant on their bearings or axles. Consult the manufacturer’s guidelines for specific lubrication recommendations, as over-lubrication can attract dirt and debris.
  • 3. Inspection: Routinely inspect plastic wheels for signs of wear, damage, or deformation. Look for cracks, chips, or irregularities in the wheel’s surface. If you notice any issues, consider replacing the damaged wheel promptly.
  • 4. Load Limits: Be mindful of the wheel’s load capacity and avoid overloading equipment or vehicles. Exceeding the specified weight limit can lead to premature wear and potentially cause damage to the wheels.
  • 5. Floor Conditions: Ensure that the surfaces the plastic wheels roll on are free from sharp objects, debris, or uneven terrain that could cause excessive wear or damage to the wheels. Smooth and clean floors contribute to longer wheel life.
  • 6. Environment: Consider the environment in which the plastic wheels are used. Some chemicals or abrasive substances may accelerate wear. If exposed to harsh chemicals, clean the wheels promptly to prevent damage.
  • 7. Temperature: Be aware of temperature extremes. Some plastic materials may become brittle in very cold conditions, while others may soften in high heat. Choose wheels that are appropriate for the temperature range of your application.
  • 8. Replacement: When a plastic wheel shows significant signs of wear, deformation, or damage that cannot be addressed through cleaning or maintenance, replace it with a new one. Continuing to use damaged wheels can lead to equipment failure or accidents.
  • 9. Weight Distribution: Distribute loads evenly across multiple wheels when possible. Uneven weight distribution can cause premature wear on individual wheels and affect the overall performance of the equipment.
  • 10. Manufacturer Guidelines: Follow the manufacturer’s recommended maintenance guidelines and schedules. Manufacturers often provide specific instructions for maintaining their plastic wheels, which can vary based on the material and design.

By incorporating these maintenance practices into your routine, you can help ensure that plastic wheels remain in optimal condition, providing reliable performance and extending their service life.

plastic wheel

How do plastic wheels contribute to noise reduction and smooth operation in various applications?

Plastic wheels play a significant role in reducing noise and ensuring smooth operation in a wide range of applications across various industries. Their design and material properties contribute to these benefits in the following ways:

  • 1. Low Friction: Plastic wheels typically have low friction coefficients when in contact with surfaces. This characteristic minimizes the generation of frictional noise during movement. As a result, plastic wheels roll quietly and smoothly.
  • 2. Precision Bearings: Many plastic wheel assemblies feature precision ball bearings or roller bearings. These bearings reduce rotational resistance and provide a smooth, friction-free rotation, further contributing to noise reduction and smooth operation.
  • 3. Vibration Dampening: Plastic materials have natural vibration-dampening properties. When used in wheels, they can absorb and dissipate vibrations caused by uneven surfaces, reducing the transmission of vibration-related noise to the surroundings.
  • 4. Floor Protection: Plastic wheels are gentle on flooring surfaces. They do not scuff, scratch, or mark floors, which is essential in applications where floor protection and aesthetics are important, such as in homes, offices, and healthcare facilities.
  • 5. Absence of Metal-to-Metal Contact: Unlike metal wheels, plastic wheels do not produce noise through metal-to-metal contact with surfaces. This lack of contact noise makes plastic wheels quieter and more suitable for noise-sensitive environments.
  • 6. Lightweight Construction: Plastic wheels are often lighter than metal alternatives. Their reduced weight places less stress on equipment, resulting in less noise generated by impacts or vibrations when wheels encounter obstacles or uneven terrain.
  • 7. Non-Marking Materials: Some plastic wheels are designed with non-marking materials that prevent them from leaving marks or streaks on floors. This feature is valuable in applications where maintaining a clean and unblemished appearance is a priority.
  • 8. Custom Tread Design: Plastic wheels can have customized tread patterns that optimize grip and reduce noise. Treads with unique designs can minimize rolling resistance, improve traction, and contribute to quieter operation.
  • 9. Moisture Resistance: Plastic wheels do not absorb moisture, which can affect the performance of certain materials like rubber. This moisture resistance ensures consistent operation even in damp conditions.
  • 10. Versatility: Plastic wheels are versatile and can be tailored to specific applications. By selecting the right plastic material, bearing type, and tread design, manufacturers can optimize plastic wheels for noise reduction and smooth operation in a variety of settings.

Overall, the noise reduction and smooth operation provided by plastic wheels make them suitable for applications where minimizing noise pollution, ensuring comfort, and maintaining floor integrity are essential considerations.

plastic wheel

How does the design of a plastic wheel contribute to its durability and performance?

The design of a plastic wheel plays a significant role in determining its durability and performance. Several key design factors contribute to these attributes:

  • 1. Material Selection: The choice of plastic material is crucial. High-quality plastics, such as polyurethane, polypropylene, and nylon, are commonly used for wheel construction. These materials offer excellent durability, impact resistance, and resistance to wear and tear.
  • 2. Load Capacity: The design of the wheel must consider the expected load capacity. Reinforcements, such as ribbing or internal structures, can be added to strengthen the wheel and enhance its load-bearing capabilities. Proper load capacity design ensures that the wheel can support the intended weight without deformation or failure.
  • 3. Bearing Type: The design of the wheel includes the type of bearing used. Precision bearings, such as ball bearings or roller bearings, reduce friction and ensure smooth rolling. Properly designed bearings enhance the wheel’s performance by reducing resistance and minimizing wear.
  • 4. Tread Design: The tread design on the wheel affects its grip, stability, and noise level. Different tread patterns are used for specific applications. For example, smooth treads provide reduced rolling resistance, while treaded designs offer improved traction. The choice of tread design depends on the intended use.
  • 5. Hub and Axle Compatibility: The design of the wheel’s hub and axle connection is essential for secure attachment. It should be compatible with the mounting hardware used in the application. A well-designed hub and axle connection ensure stability and prevent wobbling or detachment during use.
  • 6. Resilience: The design should consider the wheel’s ability to absorb shocks and impacts. Resilient plastic materials can withstand sudden impacts without cracking or breaking. This is especially important in applications where the wheel may encounter rough terrain or obstacles.
  • 7. Temperature Resistance: Depending on the application, plastic wheels may need to withstand a wide range of temperatures. The design should factor in the material’s temperature resistance to ensure that the wheel remains functional in extreme conditions.
  • 8. Size and Dimensions: The size and dimensions of the wheel are critical for load distribution and stability. Properly sizing the wheel according to the application’s requirements ensures optimal performance and durability.
  • 9. Corrosion Resistance: In some environments, corrosion resistance is essential. The design may incorporate materials or coatings that protect against corrosion, ensuring a longer service life.
  • 10. Wheel Mounting: The method of mounting the wheel to the equipment or vehicle is part of the design. It should be secure and reliable to prevent wobbling or detachment during use.
  • 11. Weight Distribution: Proper weight distribution across the wheel is important for even wear and reduced stress on the wheel. Design considerations may include the wheel’s shape and load-bearing capacity to ensure even weight distribution.

A well-designed plastic wheel takes into account these factors to maximize its durability and performance. It should be capable of withstanding the demands of its intended application while providing smooth and reliable movement.

China Professional Custom OEM Machine Drive Injection Plastic Toothed Cylindrical Spur Gear Cog Wheel  China Professional Custom OEM Machine Drive Injection Plastic Toothed Cylindrical Spur Gear Cog Wheel
editor by Dream 2024-05-06

China Professional Customized Plastic Injection Products Components Auto Parts Machine Parts Plastic CHINAMFG

Product Description

Customized Plastic Injection Products Components Auto Parts Machine Parts Plastic Gear Wheel

Size:

(L)1200mm x (W)1000mm x (H)150mm

Quantity

208pcs in 20FT

  480pcs in 40FT

556pcs in 40HQ

Loading Capacity:

Static

6000 kgs

 

Dynamic

1500 kgs

 

Racking

800  kgs

Quality Standard:

– GB/T15234-94 national standards

– ISO 9001:2008

– ISO 14001:2004

– SGS: RoHS standard

Others:

– 4-way Forklift

– One-time design injection

– Rubber grommets inserted to prevent slippage

Temperature

Within -40ºC ~ +60ºC (HDPE/PP).

Apply to:

Logistic, Storage, Warehouse stacking

We also can OEM small plastic parts

Plastic Injection Moulding
 Our Service:  
1. Our factory has made various high precision plastic injection moulding for Residential gasmeter,
Commercial gasmeters and Industrial gasmeters, as per customer’s drawing or sample,
2.  From prototype making,mold design,mold making,plastic injection moulding,printing/painting, to assembly,all in our factory.
Our advantage for mold:  
Mold Material:    S136, SKD61,H13,SKD11,2738,718,etc, 
High hardness alloy steel with heat treatment,wear resistance,corrosion resistance.
Mold Base:  LKM,HASCO,DME,etc.   
Mold Cavity:  Single-cavity or Multi-cavit,as per customers requirement and part structure.
Mold Life:  300,000 shots, 1,000,000 shots .                  
Runner:  Hot runner, Cold runner, as per customers requirement and part structure.
Software: UG,Proe,Solidworks,AutoCad,etc.
Technology Team: Designers and professional mold engineers with 20-years-experience.
Equipments:  CNC,  EDM, precision grinder,milling machine,driller,wire cutting  machine,etc
Our advantage for Precison Plastic Parts:
Part Material: Normal Plastic:  PP,PE,EVA,PS;
Plastic:  PA,PA6,PA66,PC+ABS,PA46,PA+60%GF,PC,ABS,POM, 
PBT,TPU,TUR;
High Enginering Plastic:  PEEK,PPS,PPO,PEI,PES,PLA,LCP,antistatic plastic,etc.                   
Part Size:       Micro Size: 3*3*3(mm)
Medium size:400*300*250(MM)     
Part Surface: Polishing/smooth,Texture/frosted,Printing,Painting,Plating.     
Part Color: Nature,white,black,red,yellow,blue,green, as per your requirment.
Appliance Filed: Electronic products,industrial product, household product,medical device,petrochemical,
auto,aerospace,home appliances, LED lamp parts,agriculture parts,etc.
Equipments: Full automatic injection machines from 60T to 250T–10 sets,ultrasonic welder.
QC Equipments: Callipers,Projector.
Export Market: Mainly export to Europe,North America,Australia, also to Middle East,South America,Asia.
Our principle: Take quality as the first consideration,with sincere service,low price,prompt delivery.
Delivery Time: 5–30 days,as per your qty and mold cavity.        

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery
Hardness: Soft Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Plastic
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

plastic wheel

How does the choice of materials impact the performance of plastic wheels in different settings?

The choice of materials significantly impacts the performance of plastic wheels in various settings. Different plastics offer unique properties that make them suitable for specific applications and environments. Here’s how material choice affects plastic wheel performance:

  • 1. Durability: High-quality plastics like polyurethane and nylon are known for their durability. They resist wear and tear, making them ideal for heavy-duty settings, such as industrial equipment or manufacturing environments.
  • 2. Load Capacity: The material’s strength and rigidity influence a plastic wheel’s load-bearing capacity. Reinforced plastics or materials like glass-filled nylon can handle heavier loads compared to softer plastics like polypropylene.
  • 3. Chemical Resistance: Certain plastic materials, such as polypropylene, offer excellent chemical resistance. They are suitable for applications where exposure to chemicals or acids is a concern, like laboratories or chemical processing plants.
  • 4. Temperature Tolerance: Some plastics are designed to withstand extreme temperatures. For example, acetal (POM) wheels can handle both high and low-temperature environments, making them suitable for freezer or high-heat applications.
  • 5. Moisture Resistance: Plastics like polyurethane and nylon are moisture-resistant and do not absorb water. This property ensures that the wheels remain functional even in wet conditions, such as outdoor use or in humid environments.
  • 6. UV Resistance: UV-resistant plastics can endure prolonged exposure to sunlight without becoming brittle or degrading. This feature is essential for outdoor applications like lawnmowers or garden equipment.
  • 7. Non-Marking: Soft, non-marking plastics are used in applications where floor protection is crucial. These wheels prevent scuffing or damage to delicate flooring surfaces.
  • 8. Weight: The choice of material impacts the weight of the wheel. Lighter plastics are preferred for applications where weight reduction is essential, such as aircraft ground support equipment.
  • 9. Noise Level: Some plastic materials are designed to reduce noise when in operation. They offer quieter movement, making them suitable for environments where noise reduction is a priority.
  • 10. Cost: Material choice can affect the cost of plastic wheels. High-performance plastics often come at a higher price point, while standard plastics like polypropylene are more cost-effective.

The selection of the right plastic material depends on the specific demands of the setting and application. Engineers and manufacturers choose materials that align with the environmental conditions, load requirements, and performance expectations to ensure that plastic wheels deliver optimal results.

plastic wheel

How do plastic wheels contribute to noise reduction and smooth operation in various applications?

Plastic wheels play a significant role in reducing noise and ensuring smooth operation in a wide range of applications across various industries. Their design and material properties contribute to these benefits in the following ways:

  • 1. Low Friction: Plastic wheels typically have low friction coefficients when in contact with surfaces. This characteristic minimizes the generation of frictional noise during movement. As a result, plastic wheels roll quietly and smoothly.
  • 2. Precision Bearings: Many plastic wheel assemblies feature precision ball bearings or roller bearings. These bearings reduce rotational resistance and provide a smooth, friction-free rotation, further contributing to noise reduction and smooth operation.
  • 3. Vibration Dampening: Plastic materials have natural vibration-dampening properties. When used in wheels, they can absorb and dissipate vibrations caused by uneven surfaces, reducing the transmission of vibration-related noise to the surroundings.
  • 4. Floor Protection: Plastic wheels are gentle on flooring surfaces. They do not scuff, scratch, or mark floors, which is essential in applications where floor protection and aesthetics are important, such as in homes, offices, and healthcare facilities.
  • 5. Absence of Metal-to-Metal Contact: Unlike metal wheels, plastic wheels do not produce noise through metal-to-metal contact with surfaces. This lack of contact noise makes plastic wheels quieter and more suitable for noise-sensitive environments.
  • 6. Lightweight Construction: Plastic wheels are often lighter than metal alternatives. Their reduced weight places less stress on equipment, resulting in less noise generated by impacts or vibrations when wheels encounter obstacles or uneven terrain.
  • 7. Non-Marking Materials: Some plastic wheels are designed with non-marking materials that prevent them from leaving marks or streaks on floors. This feature is valuable in applications where maintaining a clean and unblemished appearance is a priority.
  • 8. Custom Tread Design: Plastic wheels can have customized tread patterns that optimize grip and reduce noise. Treads with unique designs can minimize rolling resistance, improve traction, and contribute to quieter operation.
  • 9. Moisture Resistance: Plastic wheels do not absorb moisture, which can affect the performance of certain materials like rubber. This moisture resistance ensures consistent operation even in damp conditions.
  • 10. Versatility: Plastic wheels are versatile and can be tailored to specific applications. By selecting the right plastic material, bearing type, and tread design, manufacturers can optimize plastic wheels for noise reduction and smooth operation in a variety of settings.

Overall, the noise reduction and smooth operation provided by plastic wheels make them suitable for applications where minimizing noise pollution, ensuring comfort, and maintaining floor integrity are essential considerations.

plastic wheel

Can you describe the factors to consider when selecting plastic wheels for specific applications?

Selecting the right plastic wheels for specific applications involves considering several crucial factors to ensure optimal performance and durability. Here are the key factors to keep in mind:

  • 1. Load Capacity: Determine the weight that the wheels will need to support in your application. Choose wheels with a load capacity that comfortably exceeds the maximum expected load to prevent overloading and premature wear.
  • 2. Wheel Diameter: The diameter of the wheel affects its stability, ease of rolling, and ability to overcome obstacles. Select a wheel diameter that suits the terrain and surface conditions in your application.
  • 3. Tread Design: Consider the tread pattern on the wheel. Smooth treads offer lower rolling resistance, while treaded or ribbed designs provide better traction. Choose the tread type that aligns with your application’s requirements.
  • 4. Material Selection: Plastic wheels are available in various materials, such as polyurethane, polypropylene, and nylon. The choice of material should consider factors like durability, impact resistance, chemical resistance, and temperature resistance based on your application’s environment.
  • 5. Bearing Type: Determine the bearing type used in the wheels. Precision bearings, like ball bearings or roller bearings, reduce friction and ensure smooth rolling. Choose bearings appropriate for your application’s load and usage frequency.
  • 6. Environment: Assess the operating environment. Consider factors such as exposure to moisture, chemicals, extreme temperatures, and potential corrosion. Select wheels that are suitable for the conditions they will encounter.
  • 7. Floor Protection: If your application involves rolling on delicate flooring, consider wheels with softer materials or non-marking properties to protect the floor from damage or marking.
  • 8. Mobility and Maneuverability: Evaluate the required mobility and maneuverability of your equipment or vehicle. Swivel casters may be needed for tight spaces, while fixed wheels offer stability in straight-line movement.
  • 9. Noise Level: Consider the noise level generated by the wheels. Some applications, like office furniture, require quiet operation. Choose wheels designed to minimize noise if noise is a concern.
  • 10. Maintenance: Assess the maintenance requirements of the wheels. Some wheels may require regular lubrication or cleaning, while others are low-maintenance. Ensure that the maintenance demands align with your operational capabilities.
  • 11. Mounting and Attachment: Check the compatibility of the wheel’s mounting and attachment method with your equipment or vehicle. The design should securely attach to prevent wobbling or detachment.
  • 12. Budget: Consider your budget constraints. Different types of plastic wheels come at various price points. Balance your budget with the need for quality and durability.

By carefully evaluating these factors and selecting plastic wheels that align with your specific application’s requirements, you can ensure that your equipment or vehicle operates optimally, efficiently, and safely.

China Professional Customized Plastic Injection Products Components Auto Parts Machine Parts Plastic CHINAMFG  China Professional Customized Plastic Injection Products Components Auto Parts Machine Parts Plastic CHINAMFG
editor by CX 2024-02-26

China high quality Custom CNC Small Automobile Motorcycle Auto Car Machine Electronic Molding Mould Injection Plastic Part

Product Description

CHINAMFG electronic (ZT electronic) is a professional plastic product company since the year of 2003. With many years of experience, we are engaged to offer customer high performance industrial and engineering plastic parts, products or components.
 

Production and Capicity Custom CHINAMFG fabrication, assembly, metal parts stamping
Injection Materials ABS, PP, PC, POM, PA6 & PA66, PA+GF
Mould Injection Machine 19 sets
Machine Tons, Min 50 tons
Machine Tons, Max 750 tons
Certificate or production standard ISO9001:2015
Service Mould design, material recommendation, surface treatment, assembly, metal stamping
Surface treatment Part deburring, powder coating, screen printing. 
Packing According to customer request in carton or tray

 

Plastic products and parts have become such a part of our daily life. In industry trade or daily life, they are such a versatile medium for component fabrication. ZT electronic parts are being utilized in a wide range of product applications.

As a custom plastic fabrication company, we utilize the latest technology in computerized equipment, dedicated engineers, and plastic fabrication professionals to consistently produce high quality molded injection and machined components found anywhere in the plastics fabricating industry.

Regardless of your product requirements, ZT electronic has the ability to fabricate plastics of any kind of shapes and sizes through a variety of specialty manufacturing operations.

Combine our rich experience in plastic and our engineers and technicians with modern production facility, we are striving to develop and custom fabricate the highest quality plastic components, on-time and within budget!

All videos and photos were taken in our own factory. Not beautiful but our real production site.
 

If you are looking for outstanding service from a custom plastic fabrication company with the knowledge and experience needed to meet your specific requirements, make sure to contact us. Let us put our plastic custom fabrication experience to work for you.

We are striving and hope to establish long-term relationship with satisfied customers. 
 
We also have a metal parts workshop to meet some customer’s metal parts requirement.

 

Secondary Services and advantages:

ZT electronic provides a wide range of value-added secondary services to better service our customer’s needs. Some of our services include:

  • Totally use high performance raw materials for production
  • Assembled Plastic Components
  • Metal part pressed-in or Inserts Plastic parts
  • Specialty Surface Finishes
  • Lapping
  • 3D printing for customer design testing
  • Custom Packaging
  • Several extra parts are free for customer
  • Has a metal parts workshop to offer metal parts.

Please feel free to contact us and see how we assist you with your requirement.
Thank you for your interest!

FAQ

Q1: Are you a manufacturer or foreign trade company?

We are an professional plastic manufacturer established in 2003. We produce high quality and performance plastic parts, components and products for customers.   

Q2: What do you need if we want a quote?

Kindly send us your 2D and 3D drawing or sample of your product. We also need to know other       details such as materials, estimated Quantity, packing request and others.

Q3: How and we do we confirm sample?

First open mould. Once mould is ready, we will test for several times till get qualified samples. We will send you the samples by express for confirmation. Once confirmed, production will be done according to this standard.

Q4: How does the payment process work?

Our preferential payment terms is by T/T.
Mould: 50% in deposit, balance based on sample available and confirmed.
Goods: 30% in deposit, balance is before shipment by T/T.

Q5: How do I know about the production?

We will send you videos or pictures during order production from mould opening, sampling, testing, to bass production and packing, delivery. 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Plastic Type: Thermosoftening Plastic
Plastic Form: Granule
Molding Method: Injection Molding
Material: ABS
Size: According to Customer Design
Transport Package: in Carton with Pallet
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

How does the injection molding process contribute to the production of high-precision parts?

The injection molding process is widely recognized for its ability to produce high-precision parts with consistent quality. Several factors contribute to the precision achieved through injection molding:

1. Tooling and Mold Design:

The design and construction of the injection mold play a crucial role in achieving high precision. The mold is typically made with precision machining techniques, ensuring accurate dimensions and tight tolerances. The mold design considers factors such as part shrinkage, cooling channels, gate location, and ejection mechanisms, all of which contribute to dimensional accuracy and part stability during the molding process.

2. Material Control:

Injection molding allows for precise control over the material used in the process. The molten plastic material is carefully measured and controlled, ensuring consistent material properties and reducing variations in the molded parts. This control over material parameters, such as melt temperature, viscosity, and fill rate, contributes to the production of high-precision parts with consistent dimensions and mechanical properties.

3. Injection Process Control:

The injection molding process involves injecting molten plastic into the mold cavity under high pressure. Advanced injection molding machines are equipped with precise control systems that regulate the injection speed, pressure, and time. These control systems ensure accurate and repeatable filling of the mold, minimizing variations in part dimensions and surface finish. The ability to finely tune and control these parameters contributes to the production of high-precision parts.

4. Cooling and Solidification:

Proper cooling and solidification of the injected plastic material are critical for achieving high precision. The cooling process is carefully controlled to ensure uniform cooling throughout the part and to minimize warping or distortion. Efficient cooling systems in the mold, such as cooling channels or conformal cooling, help maintain consistent temperatures and solidification rates, resulting in precise part dimensions and reduced internal stresses.

5. Automation and Robotics:

The use of automation and robotics in injection molding enhances precision and repeatability. Automated systems ensure consistent and precise handling of molds, inserts, and finished parts, reducing human errors and variations. Robots can perform tasks such as part removal, inspection, and assembly with high accuracy, contributing to the overall precision of the production process.

6. Process Monitoring and Quality Control:

Injection molding processes often incorporate advanced monitoring and quality control systems. These systems continuously monitor and analyze key process parameters, such as temperature, pressure, and cycle time, to detect any variations or deviations. Real-time feedback from these systems allows for adjustments and corrective actions, ensuring that the production remains within the desired tolerances and quality standards.

7. Post-Processing and Finishing:

After the injection molding process, post-processing and finishing techniques, such as trimming, deburring, and surface treatments, can further enhance the precision and aesthetics of the parts. These processes help remove any imperfections or excess material, ensuring that the final parts meet the specified dimensional and cosmetic requirements.

Collectively, the combination of precise tooling and mold design, material control, injection process control, cooling and solidification techniques, automation and robotics, process monitoring, and post-processing contribute to the production of high-precision parts through the injection molding process. The ability to consistently achieve tight tolerances, accurate dimensions, and excellent surface finish makes injection molding a preferred choice for applications that demand high precision.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

How do injection molded parts compare to other manufacturing methods in terms of cost and efficiency?

Injection molded parts have distinct advantages over other manufacturing methods when it comes to cost and efficiency. The injection molding process offers high efficiency and cost-effectiveness, especially for large-scale production. Here’s a detailed explanation of how injection molded parts compare to other manufacturing methods:

Cost Comparison:

Injection molding can be cost-effective compared to other manufacturing methods for several reasons:

1. Tooling Costs:

Injection molding requires an initial investment in creating molds, which can be costly. However, once the molds are made, they can be used repeatedly for producing a large number of parts, resulting in a lower per-unit cost. The amortized tooling costs make injection molding more cost-effective for high-volume production runs.

2. Material Efficiency:

Injection molding is highly efficient in terms of material usage. The process allows for precise control over the amount of material injected into the mold, minimizing waste. Additionally, excess material from the molding process can be recycled and reused, further reducing material costs compared to methods that generate more significant amounts of waste.

3. Labor Costs:

Injection molding is a highly automated process, requiring minimal labor compared to other manufacturing methods. Once the molds are set up and the process parameters are established, the injection molding machine can run continuously, producing parts with minimal human intervention. This automation reduces labor costs and increases overall efficiency.

Efficiency Comparison:

Injection molded parts offer several advantages in terms of efficiency:

1. Rapid Production Cycle:

Injection molding is a fast manufacturing process, capable of producing parts in a relatively short cycle time. The cycle time depends on factors such as part complexity, material properties, and cooling time. However, compared to other methods such as machining or casting, injection molding can produce multiple parts simultaneously in each cycle, resulting in higher production rates and improved efficiency.

2. High Precision and Consistency:

Injection molding enables the production of parts with high precision and consistency. The molds used in injection molding are designed to provide accurate and repeatable dimensional control. This precision ensures that each part meets the required specifications, reducing the need for additional machining or post-processing operations. The ability to consistently produce precise parts enhances efficiency and reduces time and costs associated with rework or rejected parts.

3. Scalability:

Injection molding is highly scalable, making it suitable for both low-volume and high-volume production. Once the molds are created, the injection molding process can be easily replicated, allowing for efficient production of identical parts. The ability to scale production quickly and efficiently makes injection molding a preferred method for meeting changing market demands.

4. Design Complexity:

Injection molding supports the production of parts with complex geometries and intricate details. The molds can be designed to accommodate undercuts, thin walls, and complex shapes that may be challenging or costly with other manufacturing methods. This flexibility in design allows for the integration of multiple components into a single part, reducing assembly requirements and potential points of failure. The ability to produce complex designs efficiently enhances overall efficiency and functionality.

5. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency. This material versatility allows for efficient customization and optimization of part performance.

In summary, injection molded parts are cost-effective and efficient compared to many other manufacturing methods. The initial tooling costs are offset by the ability to produce a large number of parts at a lower per-unit cost. The material efficiency, labor automation, rapid production cycle, high precision, scalability, design complexity, and material versatility contribute to the overall cost-effectiveness and efficiency of injection molding. These advantages make injection molding a preferred choice for various industries seeking to produce high-quality parts efficiently and economically.

China high quality Custom CNC Small Automobile Motorcycle Auto Car Machine Electronic Molding Mould Injection Plastic Part  China high quality Custom CNC Small Automobile Motorcycle Auto Car Machine Electronic Molding Mould Injection Plastic Part
editor by CX 2024-02-19

China Hot selling CNC High-Precision Grinding Machine Precision Machining Parts, Used for Injection Molded Product Mold Parts

Product Description

Precision machine part parameter

Summary of the company’s products
Manufacture HangZhou GuangMei Precision Machinery co.,Ltd
Main processing products precision fixture processing, precision machinery axle processing,spare parts,machined part.
Material Q235,S25C,S45C,S50C,S55C,SUS440C,SCM415,
SUS304,SUS316,SUS303,A5052,A6061,A7075,
SUJ2,SKD11,SKS3 ,SKH51,ASP30,HAP5R,
Surface Roughness Ra0.4mm~
Concentricity ±0.005mm
Straightness ± 0.02mm
Precision ±0.002mm
Surface Treatment TiCN,TiN,Aitain,Ticrn,Dlc,Ni coating,Black coating ,Cr couting,etc
Hardness HRC20-90
Standard JIS,DIN,ASTM/AISI international industrial standard
MOQ 1 Piece
Supply Capability 10000 pieces/Month
Delivery way EMS,OCS,DHL,UPS,FEDEX,Shipping

Processing flow

 

Main Equipment        
           
NO Equipment Name BRAND TYPE QT,Y UNIT NOTE
1 WIRE CUTTING MITSUBISI FA10S 1 SET  
2 SUPPER DRILL SUPPER DRILL 1 SET  
3 EDM CREATION  2 SET  
4 EDM SODICK AQ36L 1 SET  
5 EDM SODICK AD30L 2 SET  
6 MACHINE CENTER PRIHangZhouR 2 SET  
7 MACHINE CENTER  JIATIE 3 SET  
8 Precision large water mill PROTH   1 SET  
9 LATHE CDE6140A 1 SET  
10 NC LATHE   5 SET  
11 Outer round grinding   1 SET  
12 Heartless Grinding   1 SET  
13 GRINDE CGM-200BS 1 SET  
14 GRINDE CGM-618VS 1 SET  
15 GRINDE ZHUNLI 618M 5 SET  
16 GRINDE  618M 6 SET  
17 LASER MARKING   1 SET  
18 END MILLING TOPONE 2 SET  
19 Wanhao Projector AND MITSUTOYO 200 mm 3 SET  
20 Marble Level Platform 450× 450 *100mm 14 EA  
21 Tool Microscope 0.001MM 3 SET  
22 MITSUTOYO Digital micrometer 0 ~ 25mm,25 ~ 50mm 5 EA  
23 MITSUTOYO Digital micrometer 150mm, 200mm, 300mm 6 EA  
24 MITSUTOYODial indicator 1/1000 mm 10 EA  
25 MITSUTOYO HEIGHT GAGE ,NIKON 300 mm 10 EA  
26 BLOCK GAGE 1.005mm~100mm 15 SET  
27 Lever micrometer 1/100 mm 5 EA  
28 Inner diameter percentage meter 1/100 mm 3 EA  
29 MITSUTOYO External diameter micrometer 0 ~ 25 mm 5 EA  

Certifications

Company information
HangZhou CHINAMFG Precision Machinery Co., Ltd. is located at the west side of Xiazhuang Entrance of Qingyin Expressway, Liuding Town, CHangZhou District, HangZhou. The company was established on June 11, 2007, covering an area of above 1000 square meters.

         We specialize in customizing non-standard automatic machine parts processing, customizing precision machine parts and precision fixtures, external CNC machining, precision stainless steel casting and aluminum alloy casting and processing, we also process precision mold small parts, the highest accuracy up to 0.002mm. We are equipped with professional technical personnel and CNC equipment, according to customer requirements to sample to map processing, small batch or large batches can be.
Factory workshop

Precision machined part Packaging & Shipping

FAQ
1. Are you a manufacturer or a trading company?
We are a professional manufacturer, providing a complete set of molds and precision insert processing

2. Where is your factory?
We are located in HangZhou, ZheJiang Province, China

3. Your processing capacity?
 processing and manufacturing precision panels 10000 pieces / month or more.

4. Can you accept OEM and ODM designs?
Yes, OEMs and ODMs are acceptable.

5. How do you ensure quality?
We have strict quality control procedures:
Self-test and QC testing for each procedure

6. Do you provide sample production?
Yes, we can send you 1 to 4 photos free of charge samples, you only pay the delivery fee.

Type: Turning
Material Capabilities: Aluminum, Brass, Bronze, Copper, Hardened Metals,
Micro Machining or Not: Micro Machining
Material: Titanium,Aluminum,Brass,Copper,Stainless Steel,Ste
Transport Package: Carton Packaging and Packaging According to Custom
Specification: 300*300
Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

How do injection molded parts enhance the overall efficiency and functionality of products and equipment?

Injection molded parts play a crucial role in enhancing the overall efficiency and functionality of products and equipment. They offer numerous advantages that make them a preferred choice in various industries. Here’s a detailed explanation of how injection molded parts contribute to improved efficiency and functionality:

1. Design Flexibility:

Injection molding allows for intricate and complex part designs that can be customized to meet specific requirements. The flexibility in design enables the integration of multiple features, such as undercuts, threads, hinges, and snap fits, into a single molded part. This versatility enhances the functionality of the product or equipment by enabling the creation of parts that are precisely tailored to their intended purpose.

2. High Precision and Reproducibility:

Injection molding offers excellent dimensional accuracy and repeatability, ensuring consistent part quality throughout production. The use of precision molds and advanced molding techniques allows for the production of parts with tight tolerances and intricate geometries. This high precision and reproducibility enhance the efficiency of products and equipment by ensuring proper fit, alignment, and functionality of the molded parts.

3. Cost-Effective Mass Production:

Injection molding is a highly efficient and cost-effective method for mass production. Once the molds are created, the injection molding process can rapidly produce a large number of identical parts in a short cycle time. The ability to produce parts in high volumes streamlines the manufacturing process, reduces labor costs, and ensures consistent part quality. This cost-effectiveness contributes to overall efficiency and enables the production of affordable products and equipment.

4. Material Selection:

Injection molding offers a wide range of material options, including engineering thermoplastics, elastomers, and even certain metal alloys. The ability to choose from various materials with different properties allows manufacturers to select the most suitable material for each specific application. The right material selection enhances the functionality of the product or equipment by providing the desired mechanical, thermal, and chemical properties required for optimal performance.

5. Structural Integrity and Durability:

Injection molded parts are known for their excellent structural integrity and durability. The molding process ensures uniform material distribution, resulting in parts with consistent strength and reliability. The elimination of weak points, such as seams or joints, enhances the overall structural integrity of the product or equipment. Additionally, injection molded parts are resistant to impact, wear, and environmental factors, ensuring long-lasting functionality in demanding applications.

6. Integration of Features:

Injection molding enables the integration of multiple features into a single part. This eliminates the need for assembly or additional components, simplifying the manufacturing process and reducing production time and costs. The integration of features such as hinges, fasteners, or mounting points enhances the overall efficiency and functionality of the product or equipment by providing convenient and streamlined solutions.

7. Lightweight Design:

Injection molded parts can be manufactured with lightweight materials without compromising strength or durability. This is particularly advantageous in industries where weight reduction is critical, such as automotive, aerospace, and consumer electronics. The use of lightweight injection molded parts improves energy efficiency, reduces material costs, and enhances the overall performance and efficiency of the products and equipment.

8. Consistent Surface Finish:

Injection molding produces parts with a consistent and high-quality surface finish. The use of polished or textured molds ensures that the molded parts have smooth, aesthetic surfaces without the need for additional finishing operations. This consistent surface finish enhances the overall functionality and visual appeal of the product or equipment, contributing to a positive user experience.

9. Customization and Branding:

Injection molding allows for customization and branding options, such as incorporating logos, labels, or surface textures, directly into the molded parts. This customization enhances the functionality and marketability of products and equipment by providing a unique identity and reinforcing brand recognition.

Overall, injection molded parts offer numerous advantages that enhance the efficiency and functionality of products and equipment. Their design flexibility, precision, cost-effectiveness, material selection, structural integrity, lightweight design, and customization capabilities make them a preferred choice for a wide range of applications across industries.

Are there different types of injection molded parts, such as automotive components or medical devices?

Yes, there are various types of injection molded parts that are specifically designed for different industries and applications. Injection molding is a versatile manufacturing process capable of producing complex and precise parts with high efficiency and repeatability. Here are some examples of different types of injection molded parts:

1. Automotive Components:

Injection molding plays a critical role in the automotive industry, where it is used to manufacture a wide range of components. Some common injection molded automotive parts include:

  • Interior components: Dashboard panels, door handles, trim pieces, instrument clusters, and center consoles.
  • Exterior components: Bumpers, grilles, body panels, mirror housings, and wheel covers.
  • Under-the-hood components: Engine covers, air intake manifolds, cooling system parts, and battery housings.
  • Electrical components: Connectors, switches, sensor housings, and wiring harnesses.
  • Seating components: Seat frames, headrests, armrests, and seatbelt components.

2. Medical Devices:

The medical industry relies on injection molding for the production of a wide range of medical devices and components. These parts often require high precision, biocompatibility, and sterilizability. Examples of injection molded medical devices include:

  • Syringes and injection pens
  • Implantable devices: Catheters, pacemaker components, orthopedic implants, and surgical instruments.
  • Diagnostic equipment: Test tubes, specimen containers, and laboratory consumables.
  • Disposable medical products: IV components, respiratory masks, blood collection tubes, and wound care products.

3. Consumer Products:

Injection molding is widely used in the production of consumer products due to its ability to mass-produce parts with high efficiency. Examples of injection molded consumer products include:

  • Household appliances: Television and audio equipment components, refrigerator parts, and vacuum cleaner components.
  • Electronics: Mobile phone cases, computer keyboard and mouse, camera components, and power adapters.
  • Toys and games: Action figures, building blocks, puzzles, and board game components.
  • Personal care products: Toothbrushes, razor handles, cosmetic containers, and hairdryer components.
  • Home improvement products: Light switch covers, door handles, power tool housings, and storage containers.

4. Packaging:

Injection molding is widely used in the packaging industry to produce a wide variety of plastic containers, caps, closures, and packaging components. Some examples include:

  • Bottles and containers for food, beverages, personal care products, and household chemicals.
  • Caps and closures for bottles and jars.
  • Thin-walled packaging for food products such as trays, cups, and lids.
  • Blister packs and clamshell packaging for retail products.
  • Packaging inserts and protective foam components.

5. Electronics and Electrical Components:

Injection molding is widely used in the electronics industry for the production of various components and enclosures. Examples include:

  • Connectors and housings for electrical and electronic devices.
  • Switches, buttons, and control panels.
  • PCB (Printed Circuit Board) components and enclosures.
  • LED (Light-Emitting Diode) components and light fixtures.
  • Power adapters and chargers.

These are just a few examples of the different types of injection molded parts. The versatility of injection molding allows for the production of parts in various industries, ranging from automotive and medical to consumer products, packaging, electronics, and more. The specific design requirements and performance characteristics of each part determine the choice of materials, tooling, and manufacturing processes for injection molding.

China Hot selling CNC High-Precision Grinding Machine Precision Machining Parts, Used for Injection Molded Product Mold Parts  China Hot selling CNC High-Precision Grinding Machine Precision Machining Parts, Used for Injection Molded Product Mold Parts
editor by CX 2023-11-23

China Standard Conveyor Belts Roller Transmission Hinged Belt Chip Chain Conveyor Machine injection moulding electrical parts

Product Description

Company Profile

AI-Interroll (ZheJiang ) Automation Equipment Manufacturing Co.,Ltd is a professional manufacturer engaged in spray cooling sterilization machine, PET bottle inverted bottle sterilization machine, bottle lifting conveyor, endless mesh belt conveyor, food grade mesh belt drying machine lines, fruit and vegetable cleaning and sorting machines, packaging machinery, conveying equipment, electronic equipment, automation equipment.
We are a manufacturer integrating research and production, sales and installation.

Aixi equipment: horizontal, running, vertical, turning, screwing, clamping, hanging, flipping, rotating and other conveying lines, chain plates, chain nets, chains, belts, rollers, wind power and other conveying carriers.
 

Product Description

 

The flexible chain plate conveyor equipment is an important mechanical foundation with a wide range of applications. It is mainly used in the working conditions of high speed, heavy load, low noise and large center distance. Its transmission performance is better than that of toothed belt transmission, gear transmission and Sub-chain transmission, in order to become 1 of the transmission forms of many industries, can be divided into internal meshing toothed chain, external meshing toothed chain and internal and external composite meshing toothed chain according to the meshing form. The noise of the internal and external composite meshing toothed chain is the lowest. Small and widely used.

 

The endless mesh belt conveyor is used to transport aquatic products. The whole frame of the modular mesh belt conveyor is made of stainless steel. The conveyor belt adopts the modular plastic mesh belt, which is waterproof and rust-proof.

The endless mesh belt conveyor is a revolution to the traditional belt conveyor. It overcomes the difficulty of maintaining the belt conveyor, and the belt is easily torn, punctured and corroded. It provides customers with a safe, fast and simple maintenance mode of delivery.

 

Curved belt conveyors are widely used in food, beverage, electric, tobacco and other industries. We can choose a smaller diameter roller to make the corner connection more convenient.

Standard conveyor belt widths are 400, 500, 600, 700, 800, 1000, 1200mm, etc. Other special specifications can also be used according to customer needs. The standard turning radius of the turning belt conveyor is R600, R800, R1000, R1200mm, etc. Other special specifications can also be adopted according to customer needs.

 

Plastic mesh belt conveyor equipment assembles injection-molded plastic modules into interlocking units with plastic hinge pins that extend across the entire width of the belt. This “brick-laying” method increases the strength of the conveyor belt, and each conveyor belt can be customized and assembled into any desired width and length. The baffles and side panels can also be interlocked with hinge pins and become 1 of the integral parts of the conveyor belt.

 

Telescopic belt conveyor, it can freely expand and contract in the length direction, and control the length of the conveyor at any time. It can convey materials in 2 directions, and can be used in conjunction with other conveying equipment and material sorting systems to realize automatic production of materials in and out of storage or vehicle loading and unloading, and has been widely used in various industries.

Packaging & Shipping

 We can choose the most suitable transportation method according to your needs!
 

Our Advantages

We have a professional product and equipment research and development team as well as mature technology and rich experience.

We are the direct factory will supply you with high-quality product & quote the most competitive prices.

High effciency is our business philosophy.
 

FAQ

Are you a trading company or a manufacturer?
We are a manufacturer.

Can you design according to our requirement?
Of course, we can design automation solution according to your technical drawing and requirement. Please tell us your requirement and production process.

How to choose the most suitable Mechanical Equipment?
Our professional team will give you the best suggestion as long as you tell us what kind of test you need to do andthe required specification.

 

After-sales Service: Warranty
Warranty: One Year
Type: Conveyor
Voltage: 220V
Power: 1.5KW
Customized: Customized
Customization:
Available

|

Customized Request

Injection molded partt

Advantages of Injection Moulding

Whether you’re considering an injection molded part for your next project or need to replace an existing one, there are a few factors you should consider. These include design, surface finishes, tooling costs, and material compatibility. Understanding these factors can help you make the right decision. Read on to learn more about the advantages of injection molding and how to get started.

Design factors

One of the most critical design factors for injection molded parts is the wall thickness. The wall thickness affects many key characteristics of the part, from its surface finish to its structural integrity. Proper consideration of this factor can prevent costly delays due to mold issues or mold modifications. To avoid this problem, product designers must carefully consider the functional requirements of the part to determine the minimum and nominal wall thickness. In addition, they must also consider acceptable stress levels, since parts with excessively thin walls may require excessive plastic pressure and may create air traps.
Another factor to consider when designing a part is its ejection and release capabilities. If the part is released from the mold, the tools should be able to slide the plastic out. Injection molds usually have two sides, one of which is ejectable, and another that remains in the mold. In some cases, special features are required to prevent part release, such as a ramp or a gusset. These design features can increase the design flexibility, but they can also increase the cost of the mold.
When designing injection molded parts, the engineering team first determines the key design elements. These elements will make sure the injection process goes as smoothly as possible. This includes factors like wall thickness, rib design, boss design, corner transition, and weld line, among others. The engineering team will then perform a design for manufacturability analysis and, if all is well, can start building and testing the mold.

Material compatibility

Several factors can affect material compatibility of injection molded parts. When molding plastic parts, it is important to choose a material that is compatible with the part’s intended purpose. Many injection molding processes require that the two main plastic materials used are compatible with each other. This is the case in overmolding and two-shot injection molding.
The material you use to make an injection molded part will significantly impact the tolerance of the finished product. This is why material selection is as important as the design of the part. Many types of plastic resins can be used for injection molding. In addition, many of these resins can be modified or strengthened by adding additives, fillers, and stabilizers. This flexibility allows product teams to tailor the material to achieve desired performance characteristics.
One of the most common thermoplastics is polypropylene. It is extremely durable and has good impact strength and moisture resistance. This material is also recyclable and does not react with food.

Tooling costs

One of the largest costs for manufacturing injection molded parts is tooling. For an OEM, tooling costs can range from $15K per part for a simple part to $500K for a mold with complex geometry. Tooling costs vary based on the type of steel used and the production volume of the part.
To get a reasonable estimate, companies should have a final design, preliminary design, and sample part to hand when requesting quotes. The dimensions and complexity of the cavity in a mold are crucial in determining the tooling cost, as are the part tolerances. Part tolerances are based on the area covered by the part and its functions within the mold.
The type of mold you need can also impact your tooling costs. Injection molding machines can accommodate many different kinds of molds. Some molds are made from a single mold, while others require multiple molds. Some molds can be complicated, making them unmanufacturable, which in turn drives up the cost of tooling.
The costs for tooling for injection molding are not well known, but they do add up quickly. Many product development teams tend to consider the cost of the injection molding process in terms of direct materials, machine time, and labor, but that cost model often fails to take into account additional components.

Surface finishes

Injection molded parttSurface finishes on injection molded parts are often used to mask defects, hide wear and tear, or enhance a product’s appearance. These finishes can also be useful when the product will come in contact with people’s hands. The surface texture you choose will depend on your desired functionality as well as the way you want to use the product. Generally, rougher textures provide better grip while masking minor molding imperfections. However, they can also make a product more difficult to release from the mold. This means that you may have to increase the draft angle of the mold. In order to get the best surface finish, the toolmaker and product designer must collaborate closely early in the design process.
There are several different surface finishes that can be used for injection molded parts. One type is known as the B-grade finish, and is compatible with a wide variety of injection molding plastics. Another type of finish is called a stone polishing process, and is ideal for parts that have no aesthetic value.

Overhangs

The injection moulding industry refers to overhangs on injection molded parts as “undercuts,” and these can lead to design instability. To minimize undercuts, the design must be parallel to the part’s surface. If an undercut is present, a zigzag parting line can be used.
The overhang is typically a few millimeters shorter than the surface of the mold. It is generally made from a lower-cost plastic material than the part’s surface area. The material used for the overhang should have sufficient strength to fulfill its function. An overhang will also help to prevent the piece from deforming or cracking.
Injection molding can create overhangs around the perimeter of a part. Overhangs are not always necessary; they can be added to parts as desired. Adding an overhang, however, will add substantial tooling costs. As a result, it is better to minimize the overall thickness of a design. However, in some cases an overhang can be useful to make the part look more attractive.
For parts with complex geometries, there are a few options for overhangs. Some manufacturers use side-action molds to form more complex shapes.

CNC machining

CNC machining of injection molded parts is a process that helps manufacturers achieve precise surfaces and shapes for their products. This process typically begins with the milling of the tooling, which is typically made of aluminum or steel. This tooling is then placed in a CNC mill. This machine carves the negative of the final plastic part, making it possible to achieve specific surface finishes. The process can be adapted to create a part with a complex structure or special features.
CNC machining allows the manufacturer to produce high-performance parts. This is possible because MIM parts do not experience induced stresses or internal pressure during the manufacturing process. Furthermore, the parts produced by MIM are more durable than CNC parts. Despite their advantages, CNC machining has its limitations, especially when it comes to design freedom and intricacy. This factor is largely dependent on the software used by the manufacturer or designer.
One drawback of CNC machining is its higher cost. Compared to injection molding, CNC machining is more expensive per part. The reason is that the initial mold cost is relatively high and is spread over a large number of parts. Once the injection molding process has been completed, the cost of the parts produced by this process becomes more competitive with those produced by machined parts. However, the cost gap increases with the volume of parts produced. This cost crossover generally occurs in quantities of at least 100 parts and can reach a maximum of 5000 parts.

Production volume

Injection molded parttThe production volume of injection molded parts varies depending on the material being used. Large volumes of parts are expensive to produce, while small quantities can be produced for low cost. Injection molding requires a precise mold, which is CNC-machined from tool steel or aluminum. The mold has a negative of the part that is injected, a runner system, and internal water cooling channels to aid in cooling the part. Recent advances in 3D printing materials have made it possible to produce molds for low-volume injection molding. Previously, this was not financially viable due to the high cost of traditional mold making.
A mold is used to produce plastic parts. The molding process is very fast, with each cycle taking anywhere from 30 seconds to 90 seconds. After a part is molded, it is removed from the mold and placed on a holding container or conveyor belt. Injection molded parts are generally ready for use right away and require minimal post-processing. Injection molded parts have a similar design to a photograph, since the geometry is directly transferred to the part’s surface texture.
When selecting a plastic mold, it is important to determine the volume that the part will be produced at. If the volume is low, softer plastics may be used. However, as the part is molded over, its performance characteristics may degrade. In low-volume production, it is important to consider the overall complexity of the part. This includes the part’s draft, wall thickness, and surface finish.
China Standard Conveyor Belts Roller Transmission Hinged Belt Chip Chain Conveyor Machine   injection moulding electrical partsChina Standard Conveyor Belts Roller Transmission Hinged Belt Chip Chain Conveyor Machine   injection moulding electrical parts
editor by CX 2023-11-21

China wholesaler Custom Aluminum Case Stainless Steel Box Enclosure Sheet Metal Fabrication injection molding machine parts and functions

Product Description

  
 

Business type Manufacturer,OEM/ODM and customization service supported
Main Product plastic molds/molds,blow moulds , prototypes, injection molding products,plastic products,metal stamping die parts,CNC processing, used molds,3D printing, regular /non-standard semi/full automatic injection molding machinery line ,etc
Mould Material P20/718/738/NAK80/S136/2738/2316/H13, etc.
Moud Precision +/-0.01mm
Mould Life 50K-5000K shots
Mould Cavity Single cavity, multi-cavity
Runner System Hot runner and cold runner
GateType Pinpoint Gate, Edge Gate, Sub Gate, Film Gate, Valve Gate, Open Gate, etc.
Equipment CNC,EDM, 3d coordinate measuring instrument,Machine,plastic machinery,etc plastic part
Plastic Material PS, ABS, PP, PVC, PMMA, PBT, PC, POM, PA66, PA6, PBT+GF, PC/ABS, PEEK, HDPE, TPU, PET, PPO,etc.
Surface Treatment Polishing,Painting,Chroming,Anodizing, Brushing, Silk Screening,Water Transfering, Laser Cutting,Leather Covering,Texture,Sanblasting,Gilding,UV Painting…
Pls Provide 2D, 3D, samples, or the size of the multi-angle pictures
Quality System ISO-9001:2015
Package Seaworthy exported wooden case

About us :
HONGTENG was established in 2016 and consists of 3 factories: XiaMen Hongteng Optoelectronics Technology Co., Ltd, HangZhou Hongteng Plastic Molding Co., Ltd. and Hongteng ZhiZhi (Xihu (West Lake) Dis.) Technology Co.ltd.

Over 200 staffs and a total area of around 25,000 square CZPT ,equipped with more than 150 complete and advanced production equipment ,the company has a professional team of highly skilled design and engineering staffs to work on plastic injection mold ,blowing mold ,CNC Machining ,parts production ,mold Design ,assembling production line ,standard/non-standard customization of semi/auto-injection machinery production line ,and other flexible OEM/ODM service,etc, achieving the certificates of ISO9001 , ZheJiang Science and Technology Little Giant leader enterprise ,XiaMen Science and Technology Little Giant leader enterprise and many patents.

HongTeng gains good reputation and satisfaction from collaboration with PHILIPS,GE,OSRAM,MI,HUAWEI,CATL,NIO and many other customers ,serving various markets including Optoelectronic,Household &Industrial , Electronics & Telecommunications, Medical & Healthcare,Automotive,sports,standard/non-standard customization of semi/auto-injection molding machinery production line(Borunte Injection machine ,such as:Three-axis/Four-axis/Five-axis  servo Manipulator ;Two-axis/Four-axis/Six-axis Robot,Six-axis cooperative Robot,Lurking AGV,Composite mobile robot platform,Industrial Robot Series ,Casting Robot Series ,I.M.M Robot Series ,etc) ,and other flexible OEM/ODM service.

HongTeng aims to help clients optimize productivity and minimize manufacturing costs, strengthening the ability of OEM to compete effectively on a global basis.
welcome to contact us .

Our sample showroom:

Our certificates(ISO,Patents,Awards) honors:

Our tooling workshop:

Our injection workshop:

Our metal processing workshop:

Our R&D Department:

Our assembly workshop:

How to order :
Kindly contact or email us your inquiry or RFQS with details.One of our sales team would contact you ASAP and offer professional consultation on all your plastic molding needs and provide the best price .

FAQ:
1,What do we make?
We do mold design , plastic injection molds ,plastic products ,blowing molds ,blowing products ,Metal Stamping Die Parts,CNC Machining parts,Die Casting,standard/non-standard customization of semi/auto-injection molding machinery production line ,and other flexible OEM/ODM service.

2,Why choose us?
1.Over 20 years of experience. .
2.Around 25,000sqms production area
3.ISO9001 ,ZheJiang and XiaMen Science and Technology Little Giant leader enterprise and over 30 patent certificates
4.More than 150 complete and advanced production equipment
5.More than 30 senior engineers
6.One-stop service and technical support from design to mass production
7.Flexible solution could be customized as per client’s providing details to achieve their demands .
8.Strict quality check in prior to shipment for each order .

3,How can I get a quote?
Contact us.In order to quote you as soon as possible,kindly provide following information:
1.Detailed drawings(format:CAD/PDF/DWG/DXF/DXW/IGES/STEP etc.)
2.Material
3.Quantity  
4.Surface treatment
5.Mold life or your monthly production quantity
6.Any special packing or other requirements

4,Can I get a quote without drawings?
Sure, we appreciate to receive your samples, pictures or drafts with detailed dimensions for accurate quotation.

5,Can we CZPT NDA?
Sure,we pay much attention to protect our customers’ privacy of drawings, We never disclose customers’ information to anyone else.

6,How long is the lead time for mold?
It depends on the mold’s size and complexity .Normally ,the lead time is 25-45 days .If the mold is very simple and not in big size ,we can work out with 15days.

7,How do you control the quality?
We want long term business relationship ,we understand quality is the first priority .
Always a pre-production sample before mass production;
Always final inspection before shipment.

8,How about the transportation?
You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.We can also deliver the goods to your warehouse in China .

 

Shaping Mode: Injection Mould
Surface Finish Process: Polishing
Mould Cavity: Multi Cavity
Plastic Material: Die Stamping
Process Combination Type: Compound Die
Application: Household Appliances
Customization:
Available

|

Customized Request

Injection molded partt

Factors to Consider When Converting a Design to Injection Molding

When considering injection molding for your design, there are several things you should consider. These factors include design, material selection, process, and reliability. In addition, you should consider the price of each part. The average cost per injection molded part is between $1 and $5. If you want to reduce your costs and improve your production cycle, look into converting your design to injection molding.

Design considerations for injection molded parts

Injection molded parts must meet certain design considerations to ensure quality and precision. Design considerations include proper material choice, process control, and tool design. In addition, designers must consider the tolerance ranges for the parts to be produced. These tolerances will differ from molder to molder, and designers should discuss their specific needs with their molders before they begin production. Designers must also consider possible revisions to the mold, such as making the part more or less tighter.
When designing injection molded parts, the designer should consider the thickness of each wall. This will minimize stresses that may arise due to uneven wall thickness. Parts with uneven wall thickness can develop sink marks, voids, and molded-in stresses. This can result in longer production time and increased cost. Moreover, irregular wall thickness can restrict material flow. To minimize these problems, designers should make the transitions between the different thicknesses smooth.
Another important design consideration is the use of bosses in injection molded parts. Bosses are typically used as points of assembly and attachment in injection molded parts. Bosses are cylindrical projections with holes for threaded inserts and other fastening hardware. Injection molded parts with bosses are generally able to accommodate multiple threaded inserts without stripping. These inserts are also durable and enable several cycles of assembly.
The thickness of the walls is another important consideration when designing injection molded parts. The thickness of walls will determine many key characteristics of the part. Careful consideration of this feature will prevent expensive mold modifications and delays. The nominal wall thickness should be determined based on the functional requirements of the part. Likewise, the minimum wall thickness should be set based on acceptable stress. If the walls are too thin, air will collect between them and compromise the functional performance of the part.

Material selection

Selecting the right material for your injection molded parts is an important part of the process. While there are many options, there are also many factors to consider. For instance, what kind of end product are you producing? Whether it’s a consumer part for your home or a complex part for the aerospace industry, you’ll need the right material for the job.
There are literally hundreds or thousands of types of plastic materials available for injection molding. One of the most common types is ABS, a polymer that has a high degree of structural strength and low cost. Another popular choice is polycarbonate, which offers excellent heat resistance and transparency. Alternatively, you can opt for Ultem, a high performance plastic that’s commonly used in medical and aerospace applications.
The process of designing plastic products involves a combination of art and science. The goal of this process is to create a high-quality product that meets the expectations of consumers. By doing this, you’ll reduce production costs and increase profits. It’s not an easy process, but it’s well worth the effort.
Injection molding is an efficient and versatile method of manufacturing medical devices. It can be done in high volumes and with high flexibility. In addition to this, it also offers a broad range of materials. This is important when your parts need to be made of different materials with unique physical properties. For example, if you’re producing toys, you’ll want to use Acrylonitrile Butadiene Styrene (ABS). ABS is also a great option for medical applications because it can withstand the high temperatures and pressures of medical environments.
When choosing plastic injection molding materials, keep in mind the weight and stiffness of the material. Some applications require hard plastics, while others require softer materials. In addition, the material’s flexibility will determine how much you can bend it.

Process

Injection molded parttInjection molding is a process in which plastic parts are formed by pressing melt into a mold. The process takes place in two stages. During the first step, the material is injected and heated, while the second stage is when the mold is opened and the part ejected. The part is then finished and ready for use.
The material used in injection molding is made from a variety of polymers. Common polymers include nylon, elastomers, and thermoplastics. Since 1995, the number of materials used in injection molding has increased by 750 percent. Some materials are newly developed while others are alloys of previously-developed materials. The selection of material primarily depends on the strength and function required by the final part. Also, the cost of the material is a critical factor.
The design of custom components for the molding process should be carried out by a skilled industrial designer. There are a number of design guidelines for plastic parts, which should be followed carefully to achieve high quality and dimensional accuracy. Failure to follow these guidelines can lead to undesirable results. Therefore, it is crucial to specify specific requirements for the parts before the process begins.
The process is reliable and highly repeatable, making it ideal for large-scale production. Injection molding also allows for the creation of multi-cavity injection mold parts, which can create several parts in one cycle. Other advantages of the injection molding process include low labor costs, minimal scrap losses, and low post-mold finishing costs.
Before beginning the full production run, technicians perform a trial run. In this test, they insert a small shot weight in the mould. Then, they apply a small holding pressure and increase the holding time until the gate freezes. Then, they weigh the part to check if it is right.

Reliability

Injection-molded parts are subject to a variety of defects. One of the most common is unwanted deformation. This may happen when the temperature of the mold is too high or there is not enough plastic injected into the mold. Another problem is millidiopter range distortion. This distortion is invisible to the naked eye, and cannot be detected by manual inspection. Regardless of the cause, preventing unwanted deformations is critical for the long-term performance of the part.
The process of creating a custom mould for a plastic component requires great skill. Creating a mould that is perfectly suited to the product is important, because a good mould is crucial in avoiding potential defects. Traditionally, this process relied on the skill of a toolmaker and trial-and-error methods. This slows down the process and increases the cost of production.
Another factor contributing to injection molded parts’ reliability is the high level of repeatability. Injection molding is ideal for high volume production, because parts are easily re-molded. However, the process can be prone to failure if there is no quality control. While most injection-molded parts will last for a long time, parts that are prone to wear will eventually fail.
Besides high level of consistency and reliability, injection-molded parts are also eco-friendly. Unlike other manufacturing methods, the injection molding process produces little to no waste. Much of the plastic left behind in the process can be recycled, making it a green alternative. Another benefit of this manufacturing method is automation, which helps reduce production costs. Overall, injection molding is a highly reliable and consistent product.
Injection molding requires precise measurements and a 3-D model. It is also important to check for wall uniformity and draft angles. Properly-designed parts can avoid deformations. If the wall thickness is too low, support ribs can be used. Proper draft angles are important to ensure that the part can be removed easily from the mold.

Cost

Injection molded parttThe cost of injection molded parts depends on many factors, including the complexity of the part and the mold design. Simpler designs, fewer CAD steps and simpler processes can help companies minimize costs. Another factor that affects the cost of injection molded parts is the geometry of the part. In general, complex geometries require more design work and tooling time. Additionally, thicker walls require more material than thin ones, which raises the cost of the part.
The amount of plastic used in the mold is also a key factor. Injection molding requires large quantities of material, so parts that are larger will require a larger mold. Larger parts are also more complex, so these require more detailed molds. A mold maker will be able to advise you on how to design your part to cut down on costs.
The next major factor affecting the cost of injection molded parts is the material of the mold. Most injection molds are made of steel, but the type and grade of steel used is important. Additionally, tight tolerances require molds with virtually wear-free interior cavities. Hence, higher-grade steel is required.
Another factor affecting the cost of injection molded parts is the price of mold tools. Depending on the size and complexity of the part, the cost of molding tools can vary from $10,000 to several hundred thousand dollars. Injection molding tooling is an integral part of the entire process and can add up to a significant portion of the overall cost of the part.
Draft angles are another factor that affects the cost of injection molded parts. A draft is an important design element as it allows for easy part separation and removal from the mold. Without a draft, it would be very difficult to remove a part after injection.
China wholesaler Custom Aluminum Case Stainless Steel Box Enclosure Sheet Metal Fabrication   injection molding machine parts and functionsChina wholesaler Custom Aluminum Case Stainless Steel Box Enclosure Sheet Metal Fabrication   injection molding machine parts and functions
editor by CX 2023-11-15

China high quality Enclosure Design Custom Made ABS Plastic Machine Spare Products Injection Molded Parts CNC Molding Professional Factory with Good quality

Product Description


Enclosure Design Custom Made ABS Plastic Machine Spare Products Injection Molded Parts CNC Molding Professional Factory

 

Model NO. QA-437 Runner Cold /Hot Runner
Design Software UG,Pro-E Installation Fixed
Certification ISO9000 Standard HASCO
Customized Customized Mold Life 500000 Shots
Material Experience ABS/Acetal/Acetron Ns/Acrylic/Celcon/CPVC/Cycolca/ Drawing Format Step/STP/Igs/Stl/CAD/Pdf/Dwg and Other
Transport Package Customized Trademark QIFENG MOLD
Origin China Specification customized

 

 

 

OUR ADVANTAGES

  • 15 Years Experience in Precision Mould Manufacture
  • Export Standard & One-Stop Turnkey Service
  • Quick 3D Printing Prototype in 2 Days
  • 7×24 Hours Service & Free Quotation in 12 Hours
  • Logo Customization & Competitive Factory Price
  • Flexibility on work shifts,expedited service is available

Plastic Injection Molding We Produced For Computer Parts
 

Plastic Injection Molding We Produced For Power Strip Parts

Rubber Silicone Injection Molding We produced
 

Plastic Injection Molding We Produced For Car Parts
 

Injection Mold We Produced
 

                                        WHY CHOOSE CZPT MOLD

15 Years Experience in injection mould and molding industry.
We provide one-stop solution covering product concept, mould design, 3D printing, mould manufacture, mould trial, plastic molding mass production for our customer.

Professional engineering team providing quick reaction and solution to any possible issues.
We have project management chart for each mould project and provide weekly report to our customer to let them know about project status in time.

Having direct or indirect cooperation with CZPT companies.
We have been providing service for CZPT companies such as Mevius, AEG, CNPC(China National Petroleum Corporation), China Mobile.

Flexibility on working shift.
We have 2 shifts per day and expedited service is available for our customer if needed.
 

Plastic Type: Thermosetting Plastic
Plastic Form: Granule
Molding Method: Injection Molding
Runner: Cold Runner
Application: Daily Used Commodity
Cavity: Single Cavity or Multi Cavities
Customization:
Available

|

Customized Request

Injection molded partt

Factors to Consider When Converting a Design to Injection Molding

When considering injection molding for your design, there are several things you should consider. These factors include design, material selection, process, and reliability. In addition, you should consider the price of each part. The average cost per injection molded part is between $1 and $5. If you want to reduce your costs and improve your production cycle, look into converting your design to injection molding.

Design considerations for injection molded parts

Injection molded parts must meet certain design considerations to ensure quality and precision. Design considerations include proper material choice, process control, and tool design. In addition, designers must consider the tolerance ranges for the parts to be produced. These tolerances will differ from molder to molder, and designers should discuss their specific needs with their molders before they begin production. Designers must also consider possible revisions to the mold, such as making the part more or less tighter.
When designing injection molded parts, the designer should consider the thickness of each wall. This will minimize stresses that may arise due to uneven wall thickness. Parts with uneven wall thickness can develop sink marks, voids, and molded-in stresses. This can result in longer production time and increased cost. Moreover, irregular wall thickness can restrict material flow. To minimize these problems, designers should make the transitions between the different thicknesses smooth.
Another important design consideration is the use of bosses in injection molded parts. Bosses are typically used as points of assembly and attachment in injection molded parts. Bosses are cylindrical projections with holes for threaded inserts and other fastening hardware. Injection molded parts with bosses are generally able to accommodate multiple threaded inserts without stripping. These inserts are also durable and enable several cycles of assembly.
The thickness of the walls is another important consideration when designing injection molded parts. The thickness of walls will determine many key characteristics of the part. Careful consideration of this feature will prevent expensive mold modifications and delays. The nominal wall thickness should be determined based on the functional requirements of the part. Likewise, the minimum wall thickness should be set based on acceptable stress. If the walls are too thin, air will collect between them and compromise the functional performance of the part.

Material selection

Selecting the right material for your injection molded parts is an important part of the process. While there are many options, there are also many factors to consider. For instance, what kind of end product are you producing? Whether it’s a consumer part for your home or a complex part for the aerospace industry, you’ll need the right material for the job.
There are literally hundreds or thousands of types of plastic materials available for injection molding. One of the most common types is ABS, a polymer that has a high degree of structural strength and low cost. Another popular choice is polycarbonate, which offers excellent heat resistance and transparency. Alternatively, you can opt for Ultem, a high performance plastic that’s commonly used in medical and aerospace applications.
The process of designing plastic products involves a combination of art and science. The goal of this process is to create a high-quality product that meets the expectations of consumers. By doing this, you’ll reduce production costs and increase profits. It’s not an easy process, but it’s well worth the effort.
Injection molding is an efficient and versatile method of manufacturing medical devices. It can be done in high volumes and with high flexibility. In addition to this, it also offers a broad range of materials. This is important when your parts need to be made of different materials with unique physical properties. For example, if you’re producing toys, you’ll want to use Acrylonitrile Butadiene Styrene (ABS). ABS is also a great option for medical applications because it can withstand the high temperatures and pressures of medical environments.
When choosing plastic injection molding materials, keep in mind the weight and stiffness of the material. Some applications require hard plastics, while others require softer materials. In addition, the material’s flexibility will determine how much you can bend it.

Process

Injection molded parttInjection molding is a process in which plastic parts are formed by pressing melt into a mold. The process takes place in two stages. During the first step, the material is injected and heated, while the second stage is when the mold is opened and the part ejected. The part is then finished and ready for use.
The material used in injection molding is made from a variety of polymers. Common polymers include nylon, elastomers, and thermoplastics. Since 1995, the number of materials used in injection molding has increased by 750 percent. Some materials are newly developed while others are alloys of previously-developed materials. The selection of material primarily depends on the strength and function required by the final part. Also, the cost of the material is a critical factor.
The design of custom components for the molding process should be carried out by a skilled industrial designer. There are a number of design guidelines for plastic parts, which should be followed carefully to achieve high quality and dimensional accuracy. Failure to follow these guidelines can lead to undesirable results. Therefore, it is crucial to specify specific requirements for the parts before the process begins.
The process is reliable and highly repeatable, making it ideal for large-scale production. Injection molding also allows for the creation of multi-cavity injection mold parts, which can create several parts in one cycle. Other advantages of the injection molding process include low labor costs, minimal scrap losses, and low post-mold finishing costs.
Before beginning the full production run, technicians perform a trial run. In this test, they insert a small shot weight in the mould. Then, they apply a small holding pressure and increase the holding time until the gate freezes. Then, they weigh the part to check if it is right.

Reliability

Injection-molded parts are subject to a variety of defects. One of the most common is unwanted deformation. This may happen when the temperature of the mold is too high or there is not enough plastic injected into the mold. Another problem is millidiopter range distortion. This distortion is invisible to the naked eye, and cannot be detected by manual inspection. Regardless of the cause, preventing unwanted deformations is critical for the long-term performance of the part.
The process of creating a custom mould for a plastic component requires great skill. Creating a mould that is perfectly suited to the product is important, because a good mould is crucial in avoiding potential defects. Traditionally, this process relied on the skill of a toolmaker and trial-and-error methods. This slows down the process and increases the cost of production.
Another factor contributing to injection molded parts’ reliability is the high level of repeatability. Injection molding is ideal for high volume production, because parts are easily re-molded. However, the process can be prone to failure if there is no quality control. While most injection-molded parts will last for a long time, parts that are prone to wear will eventually fail.
Besides high level of consistency and reliability, injection-molded parts are also eco-friendly. Unlike other manufacturing methods, the injection molding process produces little to no waste. Much of the plastic left behind in the process can be recycled, making it a green alternative. Another benefit of this manufacturing method is automation, which helps reduce production costs. Overall, injection molding is a highly reliable and consistent product.
Injection molding requires precise measurements and a 3-D model. It is also important to check for wall uniformity and draft angles. Properly-designed parts can avoid deformations. If the wall thickness is too low, support ribs can be used. Proper draft angles are important to ensure that the part can be removed easily from the mold.

Cost

Injection molded parttThe cost of injection molded parts depends on many factors, including the complexity of the part and the mold design. Simpler designs, fewer CAD steps and simpler processes can help companies minimize costs. Another factor that affects the cost of injection molded parts is the geometry of the part. In general, complex geometries require more design work and tooling time. Additionally, thicker walls require more material than thin ones, which raises the cost of the part.
The amount of plastic used in the mold is also a key factor. Injection molding requires large quantities of material, so parts that are larger will require a larger mold. Larger parts are also more complex, so these require more detailed molds. A mold maker will be able to advise you on how to design your part to cut down on costs.
The next major factor affecting the cost of injection molded parts is the material of the mold. Most injection molds are made of steel, but the type and grade of steel used is important. Additionally, tight tolerances require molds with virtually wear-free interior cavities. Hence, higher-grade steel is required.
Another factor affecting the cost of injection molded parts is the price of mold tools. Depending on the size and complexity of the part, the cost of molding tools can vary from $10,000 to several hundred thousand dollars. Injection molding tooling is an integral part of the entire process and can add up to a significant portion of the overall cost of the part.
Draft angles are another factor that affects the cost of injection molded parts. A draft is an important design element as it allows for easy part separation and removal from the mold. Without a draft, it would be very difficult to remove a part after injection.
China high quality Enclosure Design Custom Made ABS Plastic Machine Spare Products Injection Molded Parts CNC Molding Professional Factory   with Good quality China high quality Enclosure Design Custom Made ABS Plastic Machine Spare Products Injection Molded Parts CNC Molding Professional Factory   with Good quality
editor by CX 2023-10-18

China factory Custom Made Plastic ABS Injection Parts Molding Products Plastic Machine Part injection molding machine parts and functions

Product Description

Custom Made Plastic ABS Injection Parts Molding Products plastic machine part

Product Parameters

Material

PA, POM, ABS, PP, PET, PC, PE, HDPE, PA66+GF, PVC, TPFE….

Color

Depends on customer’s requirements.

Support Software:

Pro-E , UGS , SolidWorks ,AutoCAD

Soft ware

CAD/IGS /STEP/STP /PDF

A surface request

glossy ,texture

Mold life

50,000-3000,000 times

Smaple :

Free sample !

Delivery time :

15 days production, if opening mould, plus 15-20 days.

MIN Quantity:

1000pcs

Package :

Carton and Pallet , exact part with package every pc .

Detailed Photos

About Injection Molding
Injection molding is the most common modern method of manufacturing plastic parts. It is used to create a variety of parts with different shapes and sizes, and it is ideal for producing high volumes of the same plastic part. Injection molding is widely used for manufacturing a variety of parts, from the smallest medical device component to entire body panels of cars. A manufacturing process for producing CZPT from both thermoplastic and thermosetting materials, injection molding can create parts with complex geometries that many other processes cannot.
 

Other products

 

 

Production process

 

Company Profile

ZheJiang (HangZhou) Xihu (West Lake) Dis.xin Metal Products Co., Ltd is specialized in the production of aluminum die casting, zinc alloy die casting, and aluminum lightweight production. Since establish of 2006, we always provide the best die casting parts to customers, and now we also develop the lightweight process successfully and obtain many national patents. Our products are widely used in automobile, medical, power Industry, electrical appliance, construction, high-speed railway and so on. And we have exported to Japan, Germany, USA, Canada, Australia and many countries.

Environmental Impact Assessment & ISO 9001 Certied

Selecting a reliable and qualified partner is more different & difficult than just choosing a supplier. We have obtained the license of EIA from government and get certied of ISO 9001, and we will always process our production per as EIA & ISO requirement strictly, to guarantee the stable production, to supply the qualified parts to you and enlarge your business finally. We sincerely hope we can become your faithful partner and develop a flouring future with you.
 

Certifications

Packaging & Shipping

 

FAQ

 

1.Are you a manufacturer or a trading company?
We are a 3000-square-meter factory located in ZheJiang , China.

2.How can I get a quote?
Detailed drawings(PDF/STEP/IGS/DWG…) with material, quantity and surface treatment information.

3. Can I get a quote without drawings?
Sure, we appreciate to receive your samples, pictures or drafts with detailed dimensions for accurate quotation.

4.Will my drawings be divulged if you benefit?
No, we pay much attention to protect our customers’ privacy of drawings, signing NDA is also accepted if need.

5. Can you provide samples before mass production?
Sure, sample fee is needed, will be returned when mass production if possible.

6. How about the lead time?
Generally, 1-2 weeks for samples, 3-4 weeks for mass production.

7. How do you control the quality?
(1)Material inspection–Check the material surface and roughly dimension
(2) Production first inspection–To ensure the critical dimension in mass production
(3)Sampling inspection–Check the quality before sending to the warehouse
(4)Pre-shipment inspection–100% inspected by QC assistants before shipment

8. What will you do if we receive poor quality parts?
Please kindly send us the pictures, our engineers will find the solutions and remake them for you asap.

Material: Plastic
Application: Medical, Household, Electronics, Automotive, Agricultural
Name: Plastic Injection Molded Products
Product: Household Product
Material Available: ABS, PC, PA, PP, POM.Nylon66, etc
Color: Customize Color
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Injection molded partt

Design Considerations for Injection Molded Parts

There are many factors to consider when designing a component for injection molding. These include design factors, materials, overhangs, and process. Understanding these factors will make it easier to choose the right part for the application. In this article, we’ll go over several of the most common design considerations.

Design factors

To get the best results from your injection molded parts, you must ensure that they meet certain design factors. These factors can help you achieve consistent parts and reduce cost. These guidelines can also help you to avoid common defects. One of the most common defects is warping, which is caused by the unintended warping of the part as it cools.
When designing injection molded parts, the draft angle is critical. Increasing the draft angle allows the part to emerge cleanly from the mold and reduces stress concentration. This can improve the part’s function and speed up the production process. In addition, it ensures a uniform surface finish. Incorrect draft angles can result in parts that are not functional and can cost you money. If your product team doesn’t pay attention to these design factors, they could end up destroying expensive molds and producing a high number of rejects.
Ribs are another design factor that should be taken into consideration. Rib height should be less than three times the thickness of the part’s wall. This will prevent sink marks and minimize the chances of the ribs sticking inside the mold.

Materials

There are many options when it comes to materials for injection molded parts. Choosing the right material will affect how well it performs in your particular application. If you need a large part to be flexible and sturdy, then a plastic with good flow properties will work best. Injection molded plastics come in a variety of different resins. Choose the one that best meets your application’s needs, considering its main functionality and the desired appearance. You may also want to choose a material that is UV resistant, heat resistant, flexible, and food safe.
Polymers that are suitable for injection molding include polycarbonate and polypropylene. These materials are flexible and strong, and can be used to create parts with high-level details. These materials are also lightweight and inexpensive. Despite being flexible, they are not suitable for high-stress applications.
During the molding process, the injected material must be cooled, otherwise it will expand again. This is why you need to keep the temperature of the mould at 80 degrees Celsius or less.

Process

Injection molding is the process of creating plastic parts. The plastic is melted in a mold and then forced to cool. It then solidifies into the desired shape. During the cooling process, the plastic can shrink, so it is important to pack the material tightly in the mold to prevent visible shrinkage. When the mold is completed, it cannot be opened until the required cooling time has passed. This time can be estimated based on the thermodynamic properties of plastic and the maximum wall thickness of the part.
The mold must be precisely designed and tested. The process can be repeated many times, which makes it ideal for mass production. It is also one of the fastest ways to scale production. The more parts a mold can produce, the lower its cost per piece. This is one of the benefits of injection molding.
Injection molding parts are used for many industries, including appliances, electronics, packaging, and medical devices. They can be made to have complicated shapes.

Overhangs

Injection molded parttOverhangs are areas of extra material that surround the surface of an injection molded part. This extra material is typically made of inexpensive material that is edged or glued on the part’s surface. The overhang material can be easily separated from the blank using a simple cutting process.
The amount of material needed for an overhang is dependent on the shape of the part and the amount of surface area. Generally, an overhang is less than 15 percent of the cost of the part. Usually, the material used should be able to fulfill the overhang’s function and differentiate it from the material in the form flachen area.
Overhangs on injection molded parts should be avoided because they may cause the design to become unstable. To avoid this problem, consider designing your part so that the sides and edges are parallel to one another. This will help ensure that the part will be free of undercuts and overhangs.
Overhangs on injection molded parts can be avoided by ensuring that the parts are designed with tolerances in mind. For example, an overhang in an injection molded part can cause a mold to have an overhang that is too small for the machine. This can cause problems in the manufacturing process, and it can result in a costly mold.

Cost

Injection molding costs can vary depending on the complexity of the part, the size and the type of plastic. Parts with complex geometries may require additional design work and tooling. Larger parts can also cost more than small ones. The amount of time spent designing and producing them is also important.
To reduce the cost of injection molding, a manufacturer must consider two major factors: tooling and the material used. The plastic used for injection molding has several different properties, which will impact the part price. For instance, plastics with a lot of glass fibers will reduce the amount of time necessary to repair the mold. Another factor to consider is the thermal properties of the material.
The next major factor in the cost of injection molded parts is the material of the injection mold. While most of these molds are made of steel, the type and grade of steel used is important. Injection molds are also required to have nearly wear-free interior cavities. This is necessary to maintain tight tolerances.
Another factor that contributes to the cost of injection molded parts is the cost of bulk material. This material costs money and requires expensive electricity to process. Typically, the more parts you produce, the lower the cost per pound. Storage of bulk material is also a significant expense. Therefore, a quicker cycle time will reduce storage costs.

Reliability

While manufacturing involves some degree of variation, the variation should be within acceptable limits. This is essential if you want to produce high-quality, dimensionally stable parts. A reliable manufacturing process involves precise control over mold tooling and part design. It also requires repeatability in both quality and production processes.
A reliable injection molding process also focuses on detecting defects early in the production process. Invisible hazards, such as air pockets, mold materials compromised by overheating, and more, can lead to failure. These defects will most likely not be discovered by simple visual inspection and may not come to light until after warranty claims are filed from the field. By finding the defects in the early stages, manufacturers can maximize productivity and reduce costs by minimizing the number of replacement parts needed.
The process of building a custom mould for plastic components is highly skilled. A perfect mould will eliminate potential defects and ensure that the production process is reliable. Traditionally, this process relied on trial and error, which added time and money to the production process.

Design for manufacturability

Injection molded parttWhen designing injection molded parts, it is imperative to keep in mind their manufacturability. Injection molding allows for complex geometries and multiple functions to be combined into a single part. For example, a hinged part can have a single mold that can produce two different halves. This also decreases the overall volume of the part.
Injection molded parts do not typically undergo post-processing. However, the mold itself can be finished to various degrees. If the mold is rough, it can cause friction during the ejection process and require a larger draft angle. Detailed finishing procedures are outlined by the Society of Plastics Industry.
The process of designing injection molds is very exacting. Any errors in the mold design can lead to out-of-spec parts and costly repair. Therefore, the process of Design for Manufacturability (DFM) validation is a key step early in the injection molding process. Fictiv’s DFM feedback process can identify design challenges and provide early feedback to minimize lead times and improve quality.
The surface of an injection molded part can develop sink marks, which occur when the material has not fully solidified when it is ejected from the mold. Parts with thick walls or ribs are more prone to sinking. Another common defect in plastic injection molding is drag marks, which occur when walls scrape against one another during ejection. In addition to sink marks, parts with holes or exposed edges can form knit lines.
China factory Custom Made Plastic ABS Injection Parts Molding Products Plastic Machine Part   injection molding machine parts and functionsChina factory Custom Made Plastic ABS Injection Parts Molding Products Plastic Machine Part   injection molding machine parts and functions
editor by CX 2023-06-13